350 rub
Journal Biomedical Radioelectronics №9 for 2016 г.
Article in number:
Layered meta-analysis for forecasting of the functional condition on ersatz marker
Authors:
A.G. Kurochkin - Post-graduate Student, Department of Biomedical Engineering, Southwestern State University, Kursk E-mail: ak.kursk@gmail.com E.S. Shkatova - Post-graduate Student, Voronezh Institute of the State Fire Se Voronezh Institute of the State Fire Service, Voronezh E-mail: lshka28@mail.ru A.N. Shutkin - Ph.D. (Phys.-Math.), Deputy Head of the Institute for Academic Affairs Voronezh Institute of the State Fire Service, Voronezh E-mail: anshutkin@mail.ru
Abstract:
Two-level algorithm meta-analysis is offered In article. On the first stage are defined \"weight of\" experimental samples, falling into meta-analysis. On second stage are defined \"weight\" ersatz marker, used as \"weak\" qualifier. The Aggregation \"weak\" qualifier in \"strong\" is also realized in two stages. Offered technologies are considered on example of the building of the intellectual system of the forecasting traumas, as ersatz marker in which were used results to seeds psychological test. The Got results have shown that designed algorithm meta-analysis is an universal instrument for meta-analysis. The Solving modules as \"weak\", so and \"strong\" qualifier can be built on base of any intellectual platform. Efficiency of the algorithm weakly depends on diagnostic efficiency ersatz marker or from \"ingenious\" shaping the experimental samples. Designed intellectual technologies are directed on increasing quality medical servicing the population and can be used in system screening to diagnostics, automated system of the professional selection, preventive medicine.
Pages: 25-31
References

 

  1. Rezoljucija 61-go rasshirennogo zasedanija rabochejj gruppy IT-specialistov «Virtualnaja medicina i mHealth» (24.11.15).
  2. Sipe T.A., Curlette W.L. A meta-synthesis of factors related to educational achievement: A methodological approach to summarizing and synthesizing meta-analyses // International Journal of Educational Research. 1997. V. 25. № 7. P. 583-698.
  3. Petitti D. Meta-Analysis, Decision Analysis, and Cost Effectiveness Analysis. New York: Oxford University Press. 2006. P. 274.
  4. Filist S.A., Kurochkin A.G., Protasova V.V. i dr. Nejjrosetevye modeli dlja meta-analiza mediko-ehkologiche­skikh dannykh // Nejjrokompjutery: razrabotka, primenenie. 2015. № 6. C. 42-48.
  5. Shapiro S. Meta-analysis/shmeta-analysis // Am. J. Epidemiol. 1994. V. 140. P. 771-778.
  6. Filist S.A., SHutkin A.N., Uvarova V.V. Strukturno-funkcionalnaja model meta-analiza mediko-ehkologi­cheskikh dannykh // Voprosy radioehlektroniki. Ser. Obshhetekhnicheskaja. 2015. Vyp. 7.  S. 102-110.
  7. Filist S.A., SHatalova O.V., Efremov M.A. Gibridnaja nejjronnaja set s makroslojami dlja medicinskikh prilozhenijj // Nejjrokompjutery: razrabotka i primenenie. 2014. № 6. S. 35-39.
  8. Strelkov JU.K. Inzhenernaja i professionalnaja psi­khologija: Ucheb. posobie dlja stud. vyssh. ucheb. zavede­nijj. M.: Izdat. centr «Akademija»; Vysshaja shkola, 2001. 360 s.
  9. Seregin S.P., Fedjanin V.V., Milostnaja N.A. i dr. Matematicheskie modeli prognozirovanija vozniknovenija (obostrenija) i opredelenija form ostrogo pielo­nefrita // Izvestija JUgo-Zapadnogo gosudarstvennogo univer­si­teta. Ser. Upravlenie, vychislitelnaja tekhnika, informatika. Medicinskoe priborostroenie. 2015. № 3(16). S. 118-123.
  10. SHutkin A.N., Bojjcova E.A., Lazurina L.P. i dr. Ispolzovanie tekhnologii mjagkikh vychislenijj dlja ocenki zashhitnykh svojjstv organizma // Izvestija JUgo-Za­padnogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitelnaja tekhnika, informatika. Medicinskoe priborostroenie. 2015. №2 (15). S. 62-72.