350 rub
Journal Biomedical Radioelectronics №7 for 2016 г.
Article in number:
Medical thermography: measurement features
Keywords:
medical thermography
the positioning system
the spatial resolution of the imaging system
the rules of thermographic survey
Authors:
L.V. Zhorina - Ph.D. (Phys.-Math.), Associate Professor, Department of Biomedical Techniques, Bauman Moscow State Technical University
E-mail: larisa7777@li.ru
D.V. Spirin - Engineer, Kotel'nikov Institute of Radio-engineering and Electronics (IRE) of Russian Academy of Sciences (Moscow)
E-mail: info@irtis.ru
M.I. Shcherbakov - Senior Research Scientist, Kotel'nikov Institute of Radio-engineering and Electronics (IRE) of Russian Academy of Sciences (Moscow)
E-mail: info@irtis.ru
Abstract:
Thermographic measurement of infrared radiation flow emitted from the surface of the human body allows to determine its tem-perature by a contactless method remotely, harmless, painless. Even with the low specificity of this method has been used suc-cessfully used for diagnostics of various pathologies. However, method of currently underutilized. The accuracy and repeatability of thermographic survey is affected by a number of factors. In this connection it is necessary follow some of rules thermographic survey. Thus, the accuracy of the study increases if take off patient's clothes, and remove out of the room objects, warmer or cooler than the air in the room. The article presents the methods of thermographic studies using functional tests (effects causing the well-known response of the body).
Characteristics of visualization system are discussed. For different types of surveys and observations required different degrees of temperature and spatial resolution. Spatial resolution - the most important parameters of the thermograph, which gives the number of separately distinguishable points in the image. To improve the accuracy of determination of temperature values it is necessary to increase the spatial resolution of the images obtained with the thermograph. This can be done through a proximity optical block of the thermograph to the body of the subject. However, when approaching the optical block to the body due to the limited field of view reduced scan area. In this paper we propose a positioning system of the optical unit by moving it vertically
Designed program block of thermograph for aiming the center of the field of view of thermographic camera on reference mark and control mechanism for positioning the thermographic camera. Developed an Electromechanical actuator which provides vertical movement of the thermographic camera. This mechanism ensures a constant linear speed of the nut on the screw on the output shaft. The nut is attached thermographic camera. Start moving at some given vertical line is specified using artificial, attached to the body of the surveyed fiducial mark. This label is made of a material, spectral emissivity which is several times lower than the spectral emissivity of the human body. Developed positioning system provides increased spatial resolution due to the proximity of the optical head thermograph closer to the patient's body. A new system of positioning and guidance will reduce the procedure time of full scanning region and eliminate the need for a «gluing» of the obtained images. Due to the improvement of the design of the positioning device image quality improves due to reducing the amount of distortion.
Pages: 38-44
References
- Arora N., Martins D., Ruggerio D., Tousimis E., Swistel A.J., Osborne M.P., Simmons R.M. Effectiveness of a Noninvasive Digital Infrared Thermal Imaging System in the Detection of Breast Cancer // Am J.Surg. 2008. V.196. № 4. P. 523-526.
- SHusharin A.G., Morozov V.V., Polovinka M.P. Medicinskoe teplovidenie - sovremennye vozmozhnosti metoda // Sovremennye problemy nauki i obrazovanija. 2011. № 4. Nomer Informregistra 0421100037\\0111. URL: http://www.science-education.ru/98-4726 (data obrashhenija: 11.06.2016)
- Mital M., Scott E.P. Thermal detection of embedded tumors using infrared imaging // J. Biomech. Eng. 2007. V. 129. № 1. P. 33-39.
- Kazancev A.A. Osobennosti teplovizionnojj kartiny diffuznojj fibrozno-kistoznojj mastopatii // «Vestnik municipalnogo zdravookhranenija». Opublikovano: 23.04.2012. Nomer Informregistra: 0421200106/0006. EHlektron. nauch. zhurn. URL: http://vestnik.kmldo.ru/
- Morozov V.V., Vajjner B.G., Novikova JA.V. Medicinskoe teplovidenie: sovremennye vozmozhnosti i primenenie v ehndovazalnojj khirurgii // Fundamentalnye issledovanija. Medicinskie nauki. 2012. № 12 (chast 2). S. 325-330.
- Kolesov S.N. Osteokhondroz pozvonochnika: nevrologicheskie i teplovizionnye sindromy. N. Novgorod: Povolzhe. 2006. 220 s.
- Panteleeva O.G. Kompjuternaja termografija v diagnostike zlokachestvennykh opukholejj glaza i orbity // Klinicheskaja oftalmologija. 2001. T. 2. № 1. S. 36-42
- Gerasimova E.I., Najjmark O.B., Panteleev I.A., Plekhov O.A., GavrilovaT.V., Malova E.A. Issledovanie dinamiki temperatury rogovicy posle fakoehmulsifikacii po dannym termografii // Rossijjskijj zhurnal biomekhaniki. 2011. T. 15. № 1(51). S. 89-98.
- Ljakas R., Krishhjukajjtis A., JAkushka P., Civinskene G., Vejjkutis V., Antushevas A., Vajjchjulite R. Vozmozhnosti metoda termografii dlja opredelenija ishemicheskogo povrezhdenija miokarda // Kardiologija. 2010. № 3. S. 71-73.
- Rogalski A. Infrared Detectors for the Future // Asta Physica Polonica A. 2009. V. 116. № 3. P. 389-406.
- Meola C., Boccardi S., Carlomagno G.M. Measurements of very small temperature variations with LWIR QWIP infrared camera // Infrared Physics & Technology. 2015. V. 72. P. 195-203.
- Sajjt kompanii Irtis URL: http://www.irtis.ru (data obrashhenija: 11.06.2016).
- Likhvanceva V.G., Anurova O.A. Opukholi vek: klinika, diagnostika i lechenie. Illjustrirovannoe rukovodstvodstvo. M.: Geotar-media. 2007. 448 s.
- Ring E.F.J., Ammer K. Infrared thermal imaging in medicine // Physiol. Meas. 2012. V. 33. № 3. R33-R46 doi:10.1088/0967-3334/33/3/R33
- Antonov V.F., CHernysh A.M., Kozlova E.K. Fizika i biofizika: Uchebnik. M.: GEHOTAR-Media. 2013. 472 c.