350 rub
Journal Biomedical Radioelectronics №6 for 2016 г.
Article in number:
The practical implementation of the system noninvasive of magnetic-induction research of biological objects
Authors:
A.A. Zhilnikov - Engineer, Department of Information-Measurement and Biomedical Engineering, Ryazan State Radio Engineering University. E-mail: ark9876@mail.ru T.A. Zhilnikov - Ph. D.(Eng.), Associate Professor. E-mail: quadrus02@mail.ru . V.I. Zhulev - Dr. Sc. (Eng.), Professor, Head of Department of Information-Measurement and Biomedical Engineering, Ryazan State Radio Engineering University. E-mail: iit@rgrtu.ryazan.ru
Abstract:
The practical realization of the noninvasive of magnetic-induction research (MIR) of biological objects and the practical confirmation of the results of theoretical studies using of established the effective model of the system of MIR is covered in this article. The structure of the system noninvasive of MIR of biological objects is proposed and the processes implemented in it are described in the article. The radiation source of uniform magnetic field expected to perform as single-axis Helmholtz coil system for implementing the me-thod. However, such a coil system is cumbersome for modeling, and so it is difficult to implement for the construction. As a result, uniformity advantage is compensated errors size. So, the implementation of the radiation source in the form of the system of single-axis Helmholtz coils decided to replace the solenoid. The effective model of the radiation source of uniform magnetic field is implemented as a non-ideal solenoid for natural experiment with minimal loss of magnetic field of uniformity. The effective model of the measuring circuits is implemented in the form of flat coils with the same number of turns of copper wire are rewound. The thickness of each coil is similar to the distance between the circuits and is less than a millimeter. The coils are spaced from each other by distance equal to 2 mm. The primary winding of single-phase controlled laboratory auto-transformer is connected to an industrial AC power. The input vol-tage is 100 V. The secondary winding is connected to a stabilizing power supply is connected to the model of the radiation source (solenoid), established in the absence of a ferromagnetic sample, at a site in the center of the local uniform in space and periodic time varying magnetic field. Inside solenoid to the uniform magnetic field is the model of the measuring circuits. The reconstructed images the distribution of internal and external limits of the ferromagnetic sample are visualized on the screen of a computer monitor. In testing the effective model of the system MIR, hollow (disassembled) sample is studied. The contour graph of internal and ex-ternal limits of the sample is obtained by the results of testing.
Pages: 27-37
References

 

  1. ZHilnikov A.A., ZHilnikov T.A., ZHulev V.I. Poluchenie izobrazhenija raspredelenija magnitnogo polja vnutri biologicheskikh obektov // Biomedicinskaja radioehlektronika. 2011. № 7. S. 41-46.
  2. ZHilnikov A.A., ZHilnikov T.A., ZHulev V.I. Konceptualnaja model sposoba nerazrushajushhego izmerenija magnitnykh polejj vnutri biologicheskikh obektov // Biomedicinskaja radioehlektronika. 2012. № 7. S. 37-43.
  3. ZHilnikov A.A., ZHilnikov T.A., ZHulev V.I. Nerazrushajushhaja registracija raspredelenija plotnosti magnitnogo potoka vnutri biologicheskikh obektov // Biomedicinskaja radioehlektronika. 2013. № 7. S. 26-31.
  4. ZHilnikov A.A., ZHilnikov T.A., ZHulev V.I. Vychislitelnoe modelirovanie procedury primenenija sposoba magnitoindukcionnogo issledovanija dlja analiza formy skrytykh magnitnykh inorodnykh vkljuchenijj vnutri biologicheskikh obektov // Biomedicinskaja radioehlektronika. 2014. № 7. S. 33-43.
  5. ZHilnikov A.A., ZHilnikov T.A., ZHulev V.I. Razrabotka i fizicheskoe obosnovanie realizacii informacionno-izmeritelnojj sistemy magnitoindukcionnogo issledovanija biologicheskikh obektov // Biomedicinskaja radioehlektronika. 2015. № 5. S. 14-20.
  6. Svidetelstvo o gosudarstvennojj registracii programm dlja EHVM №2014662889. Raschet i modelirovanie raspredelenija magnitnogo polja namagni­chennogo celnometallicheskogo i pologo sharov v sfericheskojj sisteme koordinat / A.A. ZHilnikov, T.A. ZHilnikov, V.I. ZHulev, M.B. Kaplan. Rjazanskijj gosudarstvennyjj radiotekhnicheskijj universitet.
  7. Svidetelstvo o gosudarstvennojj registracii programm dlja EHVM №2014662890. Modelirovanie procedury poluchenija linejjnykh proekcijj ploskostnykh summ analiticheski rasschitannogo smeshhennogo raspredelenija magnitnogo polja namagnichennogo pologo shara / A.A. ZHilnikov, T.A. ZHilnikov, V.I. ZHulev, M.B. Kaplan. Rjazanskijj gosudarstvennyjj radiotekhnicheskijj universitet.
  8. Svidetelstvo o gosudarstvennojj registracii programm dlja EHVM №2014662872. Sposob nerazrushajushhego magnitoindukcionnogo issledovanija, pozvoljajushhego poluchat izobrazhenie geometrii vnutrennejj struktury ferromagnitnykh izdelijj / A.A. ZHilnikov,  T.A. ZHilnikov, V.I. ZHulev, M.B. Kaplan. Rjazanskijj gosudarstvennyjj radiotekhnicheskijj universitet.
  9. Patent № 2490659 RF. MPK G01R33/00. Sposob nerazrushajushhego obemnogo izmerenija vektornojj funkcii magnitnojj indukcii neodnorodno raspredelennogo v prostranstve i periodicheski izmenjajushhegosja vo vremeni magnitnogo polja / A.A. ZHilnikov, T.A. ZHilnikov, V.I. ZHulev - opubl. 20.08.2013.
  10. Patent №2548405 RF. MKP G01N27/83. Ustrojjstvo dlja nerazrushajushhejj differencialnojj vektornojj trekhmernojj magnitoskopii / A.A. ZHilnikov, T.A. ZHil­nikov, V.I. ZHulev, M.B. Kaplan. Opubl. 20.04.2015.
  11. Govorkov V.A. EHlektricheskie i magnitnye polja. M.: Svjazizdat. 1951. 341 s.