350 rub
Journal Biomedical Radioelectronics №2 for 2016 г.
Article in number:
Fractal features geo-geophysical parameters under operating conditions the MIR space station
Authors:
V.V. Tsetlin - Dr.Sc.(Eng.) Head of Laboratory, The State Centre of Science of the Russian Federation - Institute of Medical and Biologic Problems of the RAS. E-mail: tsetlin@imbp.ru V.A. Bondarenko - Ph.D.(Eng.), Leading Research Scientist, The State Centre of Science of the Russian Federation - Institute of Medical and Biologic Problems of the RAS. E-mail: bondval@imbp.ru A.M. Nosovskii - Dr.Sc.(Biol.), Leading Research Scientist, The State Centre of Science of the Russian Federation - Institute of Medical and Biologic Problems of the RAS. E-mail: nam@imbp.ru S.V. Ionov - Student, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin. E-mail: stepan8@gmail.com O.K. Filipenko - Engineer, Chair of Information technologies, Mathematics and Physics, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin. E-mail: daisy808@mail.ru
Abstract:
Inside space stations crew permanently affect the flux of cosmic ionizing radiation. Cosmic background radiation in orbit manned spacecraft, regardless of its intensity, is a fatal disadvantage for the crew. It is hundreds of times greater than the average natural background on the Earth's surface. In this regard, ensuring radiation safety during space flight is one of the main problems of preservation of health of crew members. To date, it has accumulated a great experience of control over radiation environment (RHO) on Board the orbital station, carried out by means of standard radiation detection equipment, which allows real-time monitoring of RO. During the functioning of the space station MIR from February 1987 to August 1999 was assembled a unique database of geo-Heliophysical parameters represents the accumulated experimental data on the radiation environment on the space station [1]. The main parameter characterizing the radiation environment on the MIR space station, is the cumulative absorbed dose to crew members. Absorbed dose was measured using the standard dosimeter R-16 with two measurement channels: unprotected and protected channels with extra protection thickness of 3 g/cm2, made of tissue-equivalent organic material. Information from the station arrived on Earth on a daily basis. The database also were collected daily values of geo - heliophysical parameters: AP-index of geomagnetic disturbances (in relative units), Dst - variation of the amplitude of the magnetic field of the ring current (NT), W is the number of wolf (in relative units); F10,7 - radiation flux of the Sun as a star at the wavelength of 10.7 cm (in units of 10-22-W?m-2-Hz-1). These parameters are known [2, 3], play a major role in the formation of the radiation situation at the station and serve as the basis of forecasting of the radiation situation on the MIR space station. In this connection it is interesting to analyze and predict changes in the basic geo - geophysical parameters. The fractal analysis of the most significant geo-heliophysical parameters influencing a radiation situation at station the MIR is carried out. Can be property of self-similarity in the fractal analysis not only spatial figures, but that it is very important for us, temporary realization. Self-similarity means that the fractal object consists of a large number of «copies» of. The fractal analysis allows to restore some characteristics of all system on record of a temporary number of one of parameters. Random dynamic series are a fractal - the geometrical set of points in n-dimensional phase space possessing self-similarity at various scales and nonintegral fractal dimension. The important quantitative characteristic bearing information on degree of complexity of behavior of dynamic system is correlation dimension of Dc. The purpose of the real work - on the basis of a method of the fractal analysis for nonlinear dynamic systems to reveal regularities of behavior of the set consisting of geo-heliophysical parameters It is shown that for the characteristics relating to a geomagnetic field of Earth Ap and Dst the most unstable period is the summer when Hurst's parameter of N is close to 1.
Pages: 28-33
References

 

  1. Bondarenko V.A., Cetlin V.V., Mitrikas V.G. Baza dannykh o radiacionnojj obstanovke na stancii «Mir» za period s 08.02.87 po 28.08.99 // GNC RF IMBP.  № 2000620017. Oficialnaja registracija v «Rospatent» 27 .01.2000g.
  2. Bondarenko V.A., Kolomenskijj A.V., Tibanov A.P., Telcov M.V., SHumshurov V.I. Zavisimost dozy na stancii «Saljut-6» ot indeksov solnechnojj i geomagnitnojj aktivnosti // Kosmicheskie issledovanija. 1982. № 1. S. 151-156
  3. Bondarenko V.A., Kolomenskijj A.V., Zil M.V. Analiz statisticheskikh svjazejj mezhdu kharakteristikami solnechnykh kosmicheskikh luchejj i indeksami solnechnojj aktivnosti // Solnechnye dannye. 1985. № 2. S. 52-57.
  4. Mitricas V.G., Tsetlin V.V., Teltsov M.V., et al. Radiation dose measurement abord the MIR using the R-16 instrument // Radiation Measurements. V. 35. № 5. P. 515-525.
  5. Lukk A.A., Deshherevskijj A.V., Sidorin A.JA., Sidorin I.A. Variacii geofizicheskikh polejj kak projavlenie determinirovannogo khaosa vo fraktalnojj srede. M.: OIFZ, RAN. 1996.
  6. SHreder M. Fraktaly, khaos, stepennye rjady (miniatjury iz beskonechnogo raja). Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2001. 250 s.
  7. SHreder M. Fraktaly, khaos, stepennye rjady. Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2001. 528 s.
  8. Nejjmark JU.I., Landa P.S. Stokhasticheskie i khaoticheskie kolebanija. M.: Nauka. 1987. 107 s.
  9. Kronin V.G. Postroenie fraktalov // Kompjuternye instrumenty v obrazovanii. 2001. № 5. S. 73-79.
  10. Morozov A.D. Vvedenie v teoriju fraktalov. M.- Izhevsk: Institut kompjuternykh issledovanijj. 2002. 160 s.
  11. Ivanov A.V., Koronovskijj A.A., Minjukhin A.M., JAshkov I.A. Opredelenie fraktalnojj razmernosti ovrazhno-balochnojj seti goroda Saratova // Izvestija vuzov «PND». 2006. T. 14. № 2. S. 64-74.
  12. Tretjakov JU.D.Dendrity, fraktaly i materialy // Sorosovskijj obrazovatelnyjj zhurnal. 1998. № 11.  S. 96-102.
  13. Pereberin A.V. O sistematizacii vejjvlet preobrazovanijj // Vychislitelnye metody i programmirovanie. 2001. T. 2. 66 s.
  14. Anishhenko B.C., Nejjman A.B., Moss F., SHimanskijj-Gajjer L. Stokhasticheskijj rezonans kak inducirovannyjj shumom ehffekt uvelichenija stepeni porjadka // Uspekhi fizicheskikh nauk. 1999. T. 169. № 1. S. 7-38.
  15. Keneth Falconer Fractal Geometry / Matematical Foundations and Applications. Wiley. 2003. 339 c.
  16. Lamdini G., Reppin J.W., Path F.R.S. An «Asymptotic fractal» approach to the morphology of malignant cell nuclei // Fractals. 1993. V. 1. № 3. R. 380-388.
  17. Uritsky V.M., Musaltvskaya N.I. Fractal stochastic electro­magnetic background a factor stabilizing processes of vital activity // Fractals. 1993. V. 1. № 3. R. 321-325.
  18. Yuval Fisher Fractal Image Compression. Theory and Application. Springer - Verlag. 1994. 433 c.