350 rub
Journal Biomedical Radioelectronics №10 for 2016 г.
Article in number:
Amperometric biosensor analyzer for express-determination of biochemical oxygen demand
Authors:
V.A. Arlyapov - Ph.D. (Chem.), Associate Professor, Department of Biochemistry, Tula State University E-mail: v.a.arlyapov@gmail.com P.V. Mel-nikov - Ph.D. (Phys.-Math.), Associate Professor, Department of Physical Chemistry, Moscow Technological University E-mail: melnikovsoft@mail.ru N.Yu. Yudina - Assistant, Department of Chemistry, Tula State University E-mail: tysia21-05-90@mail.ru N.K. Zaitsev - Dr.Sc. (Chem.), Associate Professor, Head of Department of Energy Technologies, Plants and Systems, Moscow Technological University E-mail: nk_zaytsev@mail.ru V.A. Alferov - Ph.D. (Chem.), Associate Professor, Head of Department of Chemistry, Tula State University E-mail: chem@tsu.tula.ru A.N. Reshetilov - Dr.Sc. (Chem.), Head of Laboratory, Tula State University; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS, Pushchino, Russia
Abstract:
Biosensor analyzer was developed for express-determination of biochemical oxygen demand (BOD) This biosensor analyzer is-based on an amperometric oxygen electrode and yeast cells. An analyzer for biochemical oxygen demand consists of primary and measuring transducers (MT). The measuring transducer is a microprocessor which provides representation of measurements in graphic form on liquid crystal display as well as offers multi nesting level and various scenarios of work. This analyzer can be used as a stand alone sensor for measurement process or used with special software to collect and store data. This analyzer is based on yeast cells of the genus Debaryomyces. To form the receptor element of a biosensor, yeast cells were immobilized in polyvinyl alcohol modified with N-vinylpirrolidone. With the use of the fabricated analyzer the concentration range of the determined BOD without dilution of a probe was 0,16-30,0 mg О2/dm3. The fabricated analyzer was tested. A correlation between the results obtained and conventional data is high (R = 0,9999). This evidence supports the possibility of using the developed biosensor analyzer as a pilot prototype model for series production.
Pages: 69-78
References

 

  1. Kolichestvennyjj khimicheskijj analiz vod: Metodika vypolnenija izmerenijj biokhimicheskojj potrebnosti v kislorode posle n-dnejj inkubacii (BPKpoln) v po­verkhnostnykh presnykh, podzemnykh (gruntovykh), pitevykh, stochnykh i ochishhennykh stochnykh vodakh. M.: Ministerstvo okhrany okruzhajushhejj sredy i prirodnykh resursov RF. 1997. 25 s.
  2. Water quality-determination of biochemical oxygen demand after n days (BODn). Part 1: Dilutionand seeding method with allylthiourea addition. 2003.
  3. Jouanneau S., Recoules L., Durand M.J., Boukabache A., Picot V., Primault Y., Lakel A., Sengelin M., Barillon B., Thouand G. Methods for assessing biochemical oxygen demand (BOD): A review // Water research. 2014. V. 49. R. 62-82.
  4. Ponamorjova O.N., Arljapov V.A., Alferov V.A., Reshe­tilov A.N. Mikrobnye biosensory dlja opredelenija biologicheskogo potreblenija kisloroda // Prikladnaja biokhimija i mikrobiologija. 2011. T. 47. № 1. S. 5-15.
  5. Bourgeois W., Burgess J.E., Stuetz R.M. On-line monitoring of wastewater quality: a review // Journal of Chemical Technology and Biotechnology. 2001. V. 76. R. 337-348.
  6. Arlyapov V.A., Yudina N.Yu., Asulyan L.D., Alferov S.V., Alferov V.A., Reshetilov A.N. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly (vinyl alcohol) modified by N-vinylpyrrolidone // Enzyme and microbial technology. 2013. V. 53. № 4. R. 257-262.
  7. Seo K.S., Choo K.H., Chang H.N., Park J.K. A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand // Applied microbiology and biotechnology. 2009. V. 83. № 2. P. 217-223.
  8. Bahadıra E.B., Sezgintürk M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses // Analytical Biochemistry. 2015. V. 478. P. 107-120.
  9. Chan C., Lehmann M., Tag K., Lung M., Kunze G., Riedeld K., Gruendige B., Renneberg R. Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly (carbamoyl) sulfonate (PCS): Part II: application of the novel biosensor to real samples from coastal and island regions // Biosen. Bioelectron. 1999. V. 14. № 3. P. 295-302.
  10. Arljapov V.A., Ponamorjova O.N., Alfjorov V.A., Rogova T.V., Blokhin I.V., CHepkova I.F., Reshetilov A.N. Mikrobnye biosensory dlja ehkspress-opredelenija BPK stochnykh vod predprijatijj pishhevojj promyshlennosti // Voda: khimija i ehkologija. 2008. № 3. C. 23-30.
  11. Voronova E.A., Iliasov P.V., Reshetilov A.N. Development, investigation of parameters and estimation of possibility of adaptation of Pichia angusta based microbial sensor for ethanol detection // Analytical Letters. 2008. V. 41. № 3. P. 377-391.
  12. Arlyapov V.A., Kamanin S.S., Ponamoreva O.N., Reshetilov A.N. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii // Enzym. Microb. Tech. 2012. V. 50. P. 215-220.
  13. Chrzanowski L., Kaczorek E., Olszanowski A. The ability of Candida maltosa for hydrocarbon and emulsified hydrocarbon degradation // Polish Journal of Environmental Studies. 2006. V. 15. № 1 P. 47-51.
  14. Handbook of Biosensors and Biochips. // Edited by Marks R.S., Cullen D.C., Karube I., Lowe C.R., Weetall H. 2007. 356 p.
  15. Alfjorov V.A., Filatova N.M., Asuljan L.D., Blokhin I.V., Gorjacheva A.A. Poluchenie stabilnogo receptornogo ehlementa biosensora immobilizaciejj bakterialnykh kletok Gluconobacter oxydans v plenku iz polivinilovogo spirta, modificirovannogo N-vinilpir­rolidonom. // Izvestija TulGU. Ser. Estestvennye nauki. 2011. № 1. C. 210-219.
  16. Demakov V.A., Maksimova JU.G., Maksimov A.JU. Immobilizacija kletok mikroorganizmov // Prikladnaja biokhimicheskaja mikrobiologija. 2008. № 2. S. 30-31.
  17. Jianbo J., Tang M., Chen X., Qi L., Dong S. Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material // Biosen. Bioelec­tron. 2003. V. 18. № 8. P. 1023-1029.
  18. Jiang Y., Xiao L.-L., Zhao L., Chen X., Wang X., Wong K.-Y. Optical biosensor for the determina­tion of BOD in seawater // Talanta. 2006. V. 70. № 1. P. 97-103.
  19. Chang I.S., Moon H., Jang J.K., Kim B.H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors // Biosen. Bioelectron. 2005. V. 20. № 9. P. 1856-1859.