350 rub
Journal Biomedical Radioelectronics №8 for 2015 г.
Article in number:
The theoretical description by methods of nonlinear dynamics of experimentally found features of interaction of low-intensive EHF and THZ of radiations with the water containing environment of biofabrics
Authors:
N.I. Sinitsyn - Dr.Sc. (Phys.-Math), Professor, Academy of Natural Sciences, Deputy Director for Research, Saratov Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS V.A. Elkin - Ph.D. (Eng.), Associate Professor, Senior Research Scientist, Saratov Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS N.M. Ryskin - Dr.Sc. (Phys.-Math), Professor, Head of Department, Saratov State University of N.G. Chernyshevskiy; Senior Research Scientist, Saratov Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS E.N. Starodybova - Software Tester, Joint Stock Company «Opensoft», Saratov O.V. Betskiy - Dr.Sc. (Phys.-Math), Professor, Academy of Natural Sciences, Head of Laboratory. Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS
Abstract:
Molecules of water possess the expressed polarity that allows to be established to branched hydrogen communications in the water environment. At the density of power of the falling electromagnetic radiation of millimetric range 10-20 μW/cm2 the electromagnetic waves of decimeter range extending with small losses are excited in the water containing environment. It is connected with presence at the water containing environment of large clusters from water molecules. The connected water in live systems is especially interesting. Authors for the first time experimentally found the phenomenon of structuration of the water containing environments in physical and biological objects due to creation of chain designs from water molecules from border of contact of water layers with a micro and nanonon-uniform surface of materials. Existence of two resonant doublets of transparency of a sheet of water thickness 0,5mm on 129,2 GHz is revealed; 131,4 GHz and 150,9 GHz, 155,4 GHz. The passing power at these frequencies more than on 25 dB exceeds the corresponding power out of resonant frequencies. It was for the first time observed as well threshold power level of this interaction. In this work, we present the results of theoretical research features of EHF and THz radiation interaction with the water-containing biological environments in order to explain a number of experimentally observed results. We develop a phenomenological model of the water-containing biofabric environment, which is represented as an ensemble of coupled self-excited oscillators. The model describes qualitatively the spectrum of the water-containing environment depending on various parameters: natural frequencies of the environment, external radiation power, and quantitative structure of various cluster structures. The suggested theoretical approach opens the way for development and optimization of novel effective biomedical radio-electronic nanotechnologies in EHF and THz bands.
Pages: 37-46
References

 

  1. KlassenV.I.Omagnichivanievodnykhsistem.M.: KHimija.1973. 239s.
  2. Ivanchenko I.A. et al.Space-time distribution of normal and parhological human skin dielectric properties in the millimeter wave range // Electro and magneto biology. 1994. №13. P. 15-25.
  3. Bessonova A.P., Stas I.E. Vlijanie vysokochastotnogo ehlektromagnitnogo polja na fiziko-khimicheskie svojjstva vody i ee spektralnye kharakteri­stiki // Polzunovskijj vestnik. 2008. №3. S. 305-309.
  4. Semikhina L.P. Vozmozhnosti diehlektricheskogo metoda dlja analiza sostojanija vodnykh sistem posle fizicheskikh vozdejjstvijj // Vestnik TjumGU. 2000. № 2. S. 39-43.
  5. Sinicyn N.I., Petrosjan V.I., JOlkin V.A., Devjatkov N.D., Guljaev JU.V., Beckijj O.V. Osobaja rol sistemy «millimetrovye volny - vodnaja sreda» v prirode // Biomedicinskaja radioehlektronika. 1998. № 1.C. 5-23.
  6. Sinicyn N.I., Petrosjan V.I., JOlkin V.A.«SPE-ehf­fekt» // Biomedicinskaja radioehlektronika. 2000. № 8. C. 83-93.
  7. Beckijj O.V., Kislov V.V., Lebedeva N.N. Millimetrovye volny i zhivye sistemy. M.: Sajjns-Press. 2004. 272 c.
  8. Petrosjan V.I., Sinicyn N.I., JOlkin V.A., Majjborodin A.V., Tupikin V.D., Krenickijj A.P., Nadjozhkin JU.M. Problemy kosvennogo i prjamogo nabljudenija rezonansnojj prozrachnosti vodnykh sred v millimetrovom diapazone // EHlektronnaja promyshlennost. 2000. № 1. C. 99-103.
  9. Petrosjan V.I., Sinicyn N.I., JOlkin V.A.Ljuminescentnaja traktovka «SPE-ehffekta» // Biomedicinskie tekhnologii i radioehlektronika. 2002. № 1. S. 28-38.
  10. Guljaev JU.V., Sinicyn N.I., JOlkin V.A., Petrosjan V.I., Beckijj O.V. EHffekty rezonansno-volnovogo sostojanija vodnykh i biologicheskikh sred. // Materialy Mezhdunar. mezhvuzovskojj konf. «Sovremennye problemy ehlektroniki i radiofiziki SVCH». Saratov: SGU GUNC «Kolledzh», 20-24 marta 2001 g. S. 36-42.
  11. Sinicyn N.I., JOlkin V.A. JAvlenie generacii ehlektricheskojj ehnergii tonkim vodosoderzhashhim sloem (CH. Ι). EHksperimentalno nabljudaemye ehlektricheskie kharakteristiki vodoehlektricheskogo ehffekta // Biomedicinskie tekhnologii i radioehlektronika. 2006. № 1-2. C. 35-53.
  12. Sinicyn N.I., JOlkin V.A. JAvlenie generacii ehlektricheskojj ehnergii tonkim vodosoderzhashhim sloem (CH. ΙI). EHksperimentalnoe issledovanie strukturizacii tonkikh vodosoderzhashhikh slojov pri ikh kontakte s razlichnymi materialami // Biomedicinskie tekhnologii i radioehlektronika. 2006. № 5-6. C. 34-57.
  13. Sinicyn N.I., JOlkin V.A. JAvlenie generacii ehlektricheskojj ehnergii tonkim vodosoderzhashhim sloem (CH. ΙII). Model mekhanizma vodoehlektricheskogo ehffekta i strukturizacii tonkogo vodosoderzhashhego sloja. Gorizonty ehtikh javlenijj v prirode // Biomedicinskie tekhnologii i radioehlektronika. 2007. № 1. S. 24-38.
  14. Petrosjan V.I., Sinicyn N.I., JOlkin V.A., Majjborodin A.V., Tupikin V.D., Nadjozhkin JU.M. Prjamoe nabljudenie rezonansnojj prozrachnosti vodnykh sred v MM-diapazone // Sb. nauch. trudov 4-go rabochego seminara IEEE Saratov-Penza Chapter. Mashinnoe proektirovanie v prikladnojj ehlektrodinamike i ehlektronike. Saratov: SGTU. 2000. C. 25-30.
  15. Petrosjan V.I., Sinicyn N.I., JOlkin V.A., Majjborodin A.V., Tupikin V.D., Nadjozhkin JU.M. Problemy prjamogo i kosvennogo nabljudenija rezonansnojj prozrachnosti vodnykh sred v millimetrovom diapazone // Biomedicinskaja radioehlektronika. 2000. № 1. C. 34-40.
  16. Sinicyn N.I., JOlkin V.A., Beckijj O.V. Osobaja rol specifichnosti vzaimodejjstvija millimetrovykh voln s vodosoderzhashhimi strukturami v medicine budushhego // Sb. nauchnykh trudov Saratovskogo nauchnogo centra RAN. Saratov. 2003. S. 217-222.
  17. Sinicyn N.I., Petrosjan V.I., JOlkin V.A. Rezonansno-volnovye processy MM-diapazona v biologii i medicine // Materialy nauchno-tekhn. konf. «EHlektronnye pribory i ustrojjstva SVCH». Saratov: FGUP NPP «Almaz», oktjabr 2001 g. Vyp. 1. S. 53-55.
  18. Sinicyn N.I., JOlkin V.A. Osobaja rol strukturizacii vodosoderzhashhejj sredy v sovremennykh biomedicinskikh radioehlektronnykh tekhnologijakh i nanotekhnologijakh budushhego // Biomedicinskie tekhnologii i radioehlektronika. 2007. № 2-4. S. 31-43.
  19. Kuramoto Y. Chemical Oscillations. Waves and Turbulence. Springer. Berlin. 1984.
  20. Acebron J.A., Bonilla L.L., Perez Vicente C.J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena // Rev. Mod. Phys. 2005. V. 77. P. 137-175.
  21. Ott E., Antonsen T. External periodic driving of large systems of globally coupled phase oscillators // Chaos. 2008. V. 18. 037112.
  22. Ott E., Antonsen T. Low dimensional behavior of large systems of globally coupled oscillators // Chaos. 2008. V. 18. 037113.
  23. Komarov M., Pikovsky A. Effects of nonresonant interaction in ensembles of phase oscillators // Phys. Rev E. 2011. V. 84. 016210.
  24. Rabinovich M.I., Trubeckov D.I. Vvedenie v teoriju kolebanijj i voln. M.: Nauka. Fizmatlit. 1984.
  25. Starodubova E. N., Usacheva S. A., Ryskin N. M., Novozhilova Y. V., Nusinovich G. S.Injection locking of a two-mode electron oscillator with close frequencies // Phys. Plasmas. 2015. V. 22. № 3. 033108.