350 rub
Journal Biomedical Radioelectronics №3 for 2015 г.
Article in number:
Mathematical simulation of the human brain radiation in microwave range
Authors:
S.G. Vesnin - Ph.D.(Eng.), Gen. director, «RES Company», Moscow, Russia М.K. Sedankin - Ph.D. (Eng.), Senior Lecturer, Department of Biomedical Devices and Computer Technologies of the Moscow State University of Instrument Engineering and Informatic N.А. Pashkova - Student of 2-nd year master, Faculty of radio engineering and electronics, National Research University «Moscow Power Engineering Institute»
Abstract:
Today ischemic stroke of human brain is typical medical social problem. Microwave radiometry allows to noninvasively detect deeply located thermal abnormalities of bio-objects. It is necessary to estimate theoretically the possibility of thermal brain abnormalities detection, using antenna (32 mm) which was developed for breast disease diagnostics by RTM-01-RES radiometer in S frequency band. For solution of this problem we developed mathematical model of radiation of the human brain in microwave frequency range, based on numerical solution of Maxwell\'s equations in multilayer lossy media and numerical solution of bioheat transfer equation with blood flow. The model of bio-objects is consisted of the several layers: skin, adipose, bone, dura, cerebral-spinal fluid, gray and white matter. Investigated object was ischemic cerebral stroke. Each layer of the brain model is characterized by it\'s biophysical parameters: thermal conductivity, parameters of blood flow, metabolic heat production, permittivity and conductivity. The solution of the transfer equation was conducted using commercial software COMSOL Multiphysics. We obtained a simple approximation formula for temperature distribution for brain with ischemic stroke. We used commercial software CST Microwave Studio to calculate the electromagnetic field in brain with stroke. CST allows solving numerically the Maxwell\'s equations for multilayer structure with dissipation losses and real construction of antenna. The mathematical simulation results showed that microwave radiometry is able to detect thermal anomalies of the cerebral cortex of the brain in S frequency band. 73% of volume under investigation is located under the skull. The spatial resolution at the depth of 3 cm is equal to 25-30 mm. Measuring depth of thermal abnormalities is equal 20 mm, but due to heat transfer from the deeper layers microwave radiometer is able to detect thermal ab-normalities located much deeper. The mathematical simulation showed that if the size of the stroke is more than 35 mm microwave radiometry is able to record a significant temperature increase (≥0,4 °C). Usually the dimen-sions of the stroke, which is detected by the primary diagnostics more than 30-40 mm, and in many cases takes up to 1/3 of the volume of the brain. That-s why microwave RTM-01-RES radiometer can be used to detect heat abnormalities and non-invasive monitoring of brain the temperature during the treatment. Certainly that the question of the calculation of the temperature field in the brain with ischemic stroke requires additional experimental and theoretical studies.
Pages: 17-32
References

 

  1. Barrett A.H., Myers P.C. Subcutaneous temperature: a method of noninvasive sensing // Science. 1975. V. 90.  P. 669-671.
  2. Barrett A.H., Myers Ph. C., Sadovsky N.L. Microwave thermography in the detection of breast cancer // AJR. 1980. № 134. R. 365 - 368.
  3. Carr K.L. Microwave Radiometry: it`s importance to the Detection of Cancer // IEEE MTT. 1989. V. 37. № 12. P. 1862 - 1869
  4. Leroy Y., Bocquet B., Mammouni A.  Non-invasive microwave   radiometry   thermometry // Physiol. Means. 1998. V. 19.P. 127-148
  5. Troickijj V.S. K teorii kontaktnykh radiometricheskikh izmerenijj vnutrennejj temperatury tel // Izv. vuzov. Ser. Radiofizika. 1981. T.24. № 9. S.1054 - 1061.
  6. Hand J. et. al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling // Physics in medicine and biology. 2001. № 46. P. 1885 - 1903.
  7. Bardati F., Iudicello S. Modeling the visibility of breast malignancy by a microwave radiometer // IEEE Trans. Biomed. Engineering. 2008. V.55. №1.P.214 - 221.
  8. Jacobsen S., Stauffer P. Multi-frequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus // IEEE Transactions on Microwave Theory and Techniques. 2002. № 50. P. 1737-1746.
  9. Jacobsen S.Microwave radiometry as a non-invasive temperature monitoring modality during  superficial hyperthermia. http://cdn.intechopen.com/pdfs/17007 /InTech-Non _invasive _temperature_monitoring_during_microwave _heating_ applyng_a_miniaturized_radiometer.pdf [EHlektronnyjjresurs]. 02.02.2014
  10. Maruyama K. et al. Feasibility of non-invasive measurement of deep brain temperature in new-born infants by multi-frequency microwave radiometry // IEEE Trans. Microwave Theor. Tech. 2000. V. 48(2). P. 2141-2147.
  11. Clarisse Beaucamp-Ricard et al. Temperature measurement by microwave radiometry // IEEE transactions on instrumentation and measurement. 2009. V.58. №5.P.1712 - 1719.
  12. Mustata L., Baltag O. Applications of Microwave Radiometry in Diagnostic Suspicion of Mammary Pathology IFMBE Proceedings V. 22. P.825 - 828.
  13. Anzimirov V.L. i dr. Issledovanie teplovogo vozbuzhdenija v kore golovnogo mozga pri funkcionalnykh testakh metodom dinamicheskogo mnogokanalnogo radioteplovidenija //Biomedicinskaja radioehlektronika. 2000. № 8. S. 22 - 30.
  14. Godik E., Guljaev Yu. Functional Imaging of Human Body. Dynamic mapping of physical E-M fields signals a breakthrough in medical diagnostics // IEEE Engineering in Medicine and Biology. 1991. V.10. № 4. P.21 - 29.
  15. Kublanov V.S. Radiofizicheskijj kompleks dlja funkcionalnykh issledovanijj golovnogo mozga // Medicinskaja tekhnika. 2009. № 3. S.10 - 15
  16. Syskov A.M. Programmno-apparatnyjj kompleks dlja issledovanija funkcionalnykh processov golovnogo mozga metodami svch radiotermografii: Dis. kand. tekhn. nauk. Ekaterinburg. 2012. 135 s.
  17. Gouzouasis I. et al. Contactless passive diagnosis for brain intracranial applications: a study using dielectric matching materials // Bioelectromagnetics. 2010. V. 31(5). P. 335-349.
  18. Karathanasis K.T., Karanasiou I.S., Uzunoglu N.K. A FEM simulation study of the optimization of the imaging attributes of a microwave radiometry system with possible functional imaging capabilities // 4th international conference on imaging technologies in biomedical sciences, from medical images to clinical information - bridging the gap. Milos island (Greece). 2007. P.7.
  19. Karathanasis K., Gouzouasis I., Karanasiou I. Noninvasive focused monitoring and irradiation of head tissue phantoms at microwave frequencies // IEEE transactions on information technology in biomedicine. 2010. V.14(3). P. 657 - 663.
  20. Oikonomou, I., Karanasiou S., Uzunoglu N.K. Phased-array near field radiometry for brain intracranial applications// Progress In Electromagnetics Research. 2010.V. l.109. P.345 - 360.
  21. Gudkov A.G.i dr. Antenny-applikatory dlja sistem radiotermokartirovanija // Mashinostroitel. 2014. № 8. S. 36 - 45
  22. Vajjsblat A. V. Medicinskijj radiotermometr // Biomedicinskie tekhnologii i radioehlektronika. 2001. № 8. S.3 - 9.
  23. Patent №2306099 (RF). Antenna-applikator dlja neinvazivnogo izmerenija temperatury vnutrennikh tkanejj biologicheskogo obekta // S.G. Vesnin.
  24. Patent № 2407429 (RF). Antenna-applikator i ustrojjstvo dlja opredelenija temperaturnykh izmenenijj vnutrennikh tkanejj biologicheskogo obekta i sposoby opredelenija temperaturnykh izmenenijj i vyjavlenija riska raka // S.G. Vesnin.
  25. Vesnin S.G., Kaplan M.A., Avakjan R.S. Sovremennaja  mikrovolnovaja  radiotermometrija // Opukholi zhenskojj reproduktivnojj sistemy. 2008. №3. S.28 - 33.
  26. Rozhkova N.I., Smirnova N.A., Nazarov A.A. Radiotermometrija molochnojj zhelezy i faktory, vlijajushhie na ee ehffektivnost // Mammologija. 2007. №3. S. 21 - 25.
  27. Burdina L.M. i dr. Radiotermometrija v algoritme kompleksnogo obsledovanija molochnykh zhelez // Sovremennaja onkologija. 2005. T.6. №1. S.8 - 9.
  28. KHarchenko V.P., Rozhkova N.I. Mammologija. Nacionalnoe rukovodstvo / Associacija medicinskikh obshhestv po kachestvu. M.: GEHOTAR-Media. 2009.328 s
  29. Siores E. et al. First in vivo application of microwave radiometry in human carotids // Journal of the American College of Cardiology. 2012.V. 59. № 18.P.1645 - 1653.
  30. Toutouzas K., Synetos A., Nikolaou  C., et al. Microwave radiometry: a new non-invasive method for the detection of  vulnerable plaque // Cardiovasc Diagn Ther. 2012. V.2. № 4. P.290 - 297.
  31. Toutouzas K., Drakopoulou M, Siores E. et al.In vivo measurement of plaque neovascularisation and thermal heterogeneity in intermediate lesions of human carotid arteries // Heart. 2012.V.98.P.1716 - 1721.
  32. Toutouzas K. et al.A new non-invasive method for detection of local inflammation in atherosclerotic plaques: experimental application of microwave radiometry // Atherosclerosis. 2011. V.215.№1. P.82 - 89.
  33. Toutouzas K. et al.Morphological and functional assessment of carotid plaques have similar predictive accuracy for coronary artery disease // Stroke. 2013. V.44.  P.2607 - 2609.
  34. SHeveljov O.A. i dr. Diagnosticheskie vozmozhnosti izmerenija temperatury golovnogo mozga s pomoshhju radiotermokartirovanija u zdorovykh dobrovolcev i bolnykh s ostrymi narushenijami mozgovogo krovoobrashhenija // Materialy V MNK «SCIENCE4HEALTH 2013» 29 oktjabrja-02 nojabrja 2013 g. M. 2013.S.167 - 168.
  35. SHeveljov O.A. i dr. Primenenie kraniocerebralnojj gipertermii u bolnykh s ostrymi narushenijami mozgovogo krovoobrashhenija // Materialy V MNK «SCIENCE4HEALTH 2013» 29 oktjabrja - 02 nojabrja 2013 g. M. 2013. S.170.
  36. SHeveljov O.A. i dr. Vozmozhnosti kraniocerebralnojj gipotermii i radiotermokartirovanija dlja diagnostiki i lechenija ostrogo narushenija mozgovogo krovoobrashhenija // Zdorove i obrazovanie v XXI veke. 2014. №2. T.16. S.42 - 43.
  37. Butrov A.V., SHevelev O.A., CHeboksarov D.V.Teplovojj balans mozga pri cerebralnykhkatastrofakh i korrekcija ego narushenijj metodom terapevticheskojj gipotermii. M.:OOO «Mediamed». 2014. 14 s.
  38. Starodubceva O.S., Begicheva S.V. Analiz zabolevaemosti insultom s ispolzovaniem informacionnykh  tekhnologijj // Medicinskie nauki. Fundamentalnye issledovanija. 2012. №8. S.424 - 427.
  39. Gusev E.I. Problema insulta v Rossii // ZHurnal nevrologii i psikhiatrii. 2003. Vyp. 9. Prilozhenie «Insult». S. 3-10.
  40. Feigin V.L. et al. Global and regional burden of stroke during 1990 - 2010: findings from the Global Burden of Disease Study 2010 // The Lancet. 2014. V.383. № 9913. P.245 - 255.
  41. Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting human body// J. Appl.Physiol.1948.V.l.P.93 - 122.
  42. Intracranial hemorrhage [EHlektronnyjjresurs] https://www.mediangels.com-27.02.2013.
  43. Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Report N.AL/OE-TR-1996-0037. Occupational and environmental health directorate, Radiofrequency Radiation Division.Brooks Air Force Base. Texas (USA). 1996.21 p.
  44. Gabriel C., Gabriel S., Corthout E. The dielectric properties of biological tissues: I. Literaturesurvey //Phys. Med. Biol.1996.№ 41.P.2231 - 2249.
  45. Gabriel C.,Gabriel S., Law R.W. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz//Phys.Med.Biol. 1996. № 41. P.2251 - 2269.
  46. Vesnin S.G., Sedankin M.K. Matematicheskoe modelirovanie sobstvennogo izluchenija tkanejj cheloveka v mikrovolnovom diapazone // Biomedicinskaja radioehlektronika. 2010. № 9. S.33 - 43.
  47. Vesnin S.G., Sedankin M.K. Miniatjurnye antenny-applikatory dlja mikrovolnovykh radiotermometrov medicinskogo naznachenija // Biomedicinskaja radioehlektronika. 2011. № 10. S. 51 - 55.
  48. Vesnin S.G., Sedankin M.K. Sravnenie antenn-applikatorov medicinskogo naznachenija // Biomedicinskaja radioehlektronika. 2012. № 10. S.63 - 74.
  49. Vesnin S.G., Sedankin M.K. Razrabotka serii antenn-applikatorov dlja neinvazivnogo izmerenija temperatury tkanejj organizma cheloveka pri razlichnykh patologijakh // Vestnik MGTU im. N.EH.Baumana. Ser. Estestvennye nauki. 2012. Specvypusk № 6. S.43 - 61.
  50. Sedankin M.K. Antenny-applikatory dlja radiotermometricheskogo issledovanija teplovykh polejj vnutrennikh tkanejj biologicheskogo obekta: Dis. kand. tekhn. nauk. M. 2013.190 s.
  51. Yee K. S. Numerical solution of initial boundary value problems involving Maxwell\'s equations in isotropic media // IEEE Trans. Antennas Propagat. 1966. V.14. № 4.  P.302 - 307.
  52. Hong-qin Yang et. al. Finite element thermal analysis of breast with tumor an its comparison with thermography // Proc. SPIE 6826. Optics in Health Care and Biomedical Optics III. Beijing (China). 2007. [EHlektronnyjjresurs].
  53. Osman M. M., Afify E. M. Thermal modeling of the normal woman-s breast // J. Biomech. Eng. 1984. V.106(2).  P.123 - 130.
  54. Osman M.M., Afify E. M. Thermal modeling of the malignant woman-s breast // J. Biomech. Eng. 1988.V. 110(4).P. 269 - 276.
  55. Ng E.Y.-K., Sudharsan N.M. An improved 3-D direct numerical modelling and thermal analysis of a female breast with tumor // International Journal of Engineering in Medicine, Proc.Instn Mech Engrs. 2001. V. 215.Part H. P. 25 - 37.
  56. Ying Hea, Minoru Shirazakib, Hao Liuc. A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation // Computers in Biology and Medicine. 2006. V.36. R.1336 - 1350.
  57. Gonzalez F.J. Thermal Simulation of Breast Tumors // Revista Mexicana de Fisica. 2007. V.53 (4). R. 323 - 326.
  58. Mital M., Scott E.P. Thermal detection of embedded tumors using infrared imaging // ASME Journal of Biomechanical Engineering. 2007. V. 129 (1). R. 33 - 39.
  59. Lin Q.Y. et al. Detecting early breast tumour by finite element thermal analysis // Journal of medical engineering & technology. 2009. V.33. №4. P. 274 - 280.
  60. Umadevi V., Raghavan S.V. Framework for estimating tumour parameters using thermal imaging // Indian J. Med. Res. 2011. V.134. P. 725 - 731.
  61. Konstas A.-A. et. al. A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain // J. Appl. Physiol. 2007. V.102.P.1329-1340.
  62. Wessapan T., Srisawatdhisukul S., Rattanadecho P. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies // International journal of heat and mass transfer. 2012. V.55. P. 347-359.
  63. Janssen F.E., Van Leeuwen G.M., Van Steenhoven A.A. Modelling of temperature and perfusion during scalp cooling // Phys. Med. Biol. 2005. V.50. P.4065-4073.
  64. Rothmeier H.G. Brain tissue temperature dynamics during functional activity and possibilities for optical measurement techniques: Master of science thesis. Georgia State University.2012. P.94.
  65. Ibrahiem A., Dale C. Analysis of the temperature increase linked to the power induced by RF source // Progress In Electromagnetics Research. PIER 52. 2005. P.23 - 46.
  66. Kiourti A. et al. Dual-band implantable antennas for medical telemetry: a fast design methodology and validation for intra-cranial pressure monitoring // Progress In Electromagnetics Research. 2013. V. 14.P. 161 - 183.
  67. Collins C.M. et. al. Model of local temperature changes in brain upon functional activation // Journal of Applied Physiology. 2004. V.97. R. 2051-2055.
  68. Gosalia K. et al. Thermal elevation in the human eye and head due to the operation of a retinal prosthesis // IEEE Trans Biomed Eng.2004. V.51. №8.P.1469 - 1477.
  69. Shimosegawa E. et  al. Metabolic penumbra of acute brain infarction: a correlation with infarct growth // Ann. Neurol. 2005. V.57. P.495 - 504.
  70. Napalkov N.P., Kondratev V.B. Termograficheskijj metod v ocenke prognoza zlokachestvennykh novoobrazovanijj // Teplovidenie v medicine: Trudy Vses. konf. «TeMP-82». L. 1984. S.45 - 47.
  71. Corbett R., Laptook A., Weatherall P.Noninvasive measurements of human brain temperature using volume-localized proton magnetic resonance spectroscopy // Journal of cerebral blood flow and metabolism. 1997. V.17.P.363-369.