350 rub
Journal Biomedical Radioelectronics №2 for 2015 г.
Article in number:
The method of MMN network detecting using fMRI
Authors:
L.A. Mayorova - Ph.D.(Med.), Research Scientist, Laboratory of applied physiology of human higher nervous activity, Institute of higher nervous activity and neurophysiology of RAS, Moscow; Centre of speech pathology and neurorehabilitation (Moscow) A. G. Petrushevsky - Radiologist, Centre of speech pathology and neurorehabilitation O.N. Fedina - Radiologist, Centre of speech pathology and neurorehabilitation
Abstract:
The mismatch negativity (MMN) ? the component of evoked response potentials (ERP) with the peak latency of 150-250 ms - occurs in response to rare "deviant" stimuli presented in the sequence of the "standard" (odd-ball-paradigm). The task-independence makes MMN as invaluable indicator of auditory perception in normal subjects and in number of neurological and psychiatry diseases. However, use of the ERP for the diagnosis in the clinic is limited to their uncertain localization, arising from the spread of the electrical signal when recording EEG from the scalp. This problem can be solved by using functional magnetic resonance imaging (fMRI). The aim of this study was to develop a technique for recording mismatch negativity (MMN) adapted to functional MRI and suitable for clinical studies. We took the standard sequence of odd-ball stimuli presentation mode used in the electrophysiological studies and divided it into blocks. Each block of paradigm contained 10 auditory stimuli. Syllables [ba] was used as a "standard" and [pa] - as "deviant" (with a frequency of 20% in a single block). In 1/3 of sequences 2of 10 stimuli were "deviant", in another 1/3 blocks all 10 stimuli were only "standard", the last third of the blocks used to measure baseline activation without presenting any sounds. As a \"standard\" and \"deviant\" stimuli the syllables of Russian opposition phonemes [ba] and [pa] (pronounced by female voice, aligned along the main formants of the same duration (340 ms) and volume (85 dB) were used. The blocks were presented in random order. The developed paradigm approved on 25 right-handed healthy subjects (12 men, 13 women) in fMRI conditions. The fMRI equivalent of mismatch negativity in passive response to speech phonemes - the syllables \"ba\" and \"pa\" ? in the odd-ball paradigm was registered. The active areas in the right and left supratemporal gyri (STG), as well as in the right frontal and parietal lobes corresponded to MMN contrast. The STG-s activation was right lateralized as well as in the whole MMN activation pattern. This obtained in the present study pattern of activation consistent with the concept of MMN networking. The developed passive odd-ball-paradigm adapted to fMRI reveals activation regions with available representations of generators MMN and can thus be used in experimental and clinical purposes.
Pages: 39-47
References

 

  1. Näätänen R. The mismatch negativity: a powerful tool for cognitive neuroscience // Ear Hear.1995. V.16. № 1. P. 6 - 18.
  2. Näätänen R., Escera C. Mismatch negativity (MMN): clinical and other applications // Audiol. Neuro-Otol. 2000. № 5. P. 105-110.
  3. Näätänen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm) // Psychophysiology. 2001. № 38. P. 1 - 21.
  4. Wunderlich J.L., Cone-Wesson B.K. Effects of stimulus frequency and complexity on the mismatch negativity and other components of the cortical auditory-evoked potential // J. Acoust. Soc. Am. 2001. V.109. P. 1526 - 1537.
  5. Tervaniemi M., Ilvonen T., Sinkkonen J., Kujala A., Alho K., Huotilainen M. Näätänen R. Harmonic partials facilitate pitch discrimination in humans: electrophysiological and behavioral evidence // Neurosci. Lett. 2000. V.279. P. 29 - 32.
  6. Kraus N., McGee T., Sharma A., Carrell T., Nicol T. Mismatch negativity event-related potential elicited by speech stimuli// Ear Hear. 1992. V.13. P. 158-164.
  7. Näätänen R., Lehtokoski A., Lennes M., Cheour M., Huotilainen M., Iivonen A., Vainio M., Alku P., Ilmoniemi R.J., Luuk A., Allik J., Sinkkonen J., Alho K. Language-specific phoneme representations revealed by electric and magnetic brain responses // Nature. 1997. V.385. P. 432-434.
  8. Light G.A., Williams L.E., Minow F., Sprock J., Rissling A., Sharp R., Swerdlow N.R., Braff D.L. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants // Curr. Protoc. Neurosci. 2010. V.6. № 6. P. 25.1 - 24.
  9. Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation // Proc. Natl. Acad. Sci. U S A. 1990. V. 87. № 24. P. 9868 - 9872.
  10. Buxton R.B., Uludağ K., Dubowitz D.J., Liu T.T. Modeling the hemodynamic response to brain activation // Neuroimage. 2004. V. 23. № 1. P. 220 - 233.
  11. Novitski N., Alho K., Korzyukov O., Carlson S., Martinkauppi S., Escera C., Rinne T., Aronen H. J., Naatanen R. Effects of acoustic gradient noise from functional magnetic resonance imagingon auditory processingas reflected by event-related brain potentials // Neuroimage. 2001. № 14. P. 244 - 251.
  12. Welcome. Trust. Centre for Neuroimaging: http://www.fil.ion.ucl.ac.uk/spm.
  13. Friston K.J., Holmes A.P., Worsley K.J., et al. Statistical parametric maps in functional imaging: A general linear approach // //Hum. Brain Mapp. 1994. № 2. P.189-210.
  14. Lancaster J.L., Woldorff M.G., Parsons L.M., et al. Automated Talairach Atlas labels for functional brain mapping // Hum. Brain Mapp. 2000. № 10. P.120-131.
  15. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes // Ear Hear. 1995. V.16. P. 38 - 51.
  16. Alho K., Tervaniemi M., Huotilainen M., Lavikainen J., Tiitinen H., Ilmoniemi R.J., Knuutila J., Näätänen R. Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses // Psychophysiology. 1996. V.33. P. 369 - 375.
  17. Javitt D.C., Steinschneider M., Schroeder C.E., Vaughan H.G. Jr., Arezzo J.C. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation // Brain Res. 1994. V.667. P. 192-200.
  18. Rinne T., Alho K., Ilmoniemi R.J., Virtanen J., Näätänen R. Separate time behaviors of the temporal and frontal mismatch negativity sources // Neuroimage. 2000. V. 12 P. 14-19.
  19. Hirshorn E.A., Thompson-Schill S.L. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency // Neuropsychologia. 2006. V.44. № 12. P. 2547 - 2557.
  20. Doeller C.F., Opitz B., Mecklinger A., Krick C., Reith W., Schröger E.Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence // NeuroImage.2003. V.20. № 2. P. 1270-1282.
  21. Opitz B., Rinne T., Mecklinger A., von Cramon D.Y., Schröger E. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results // NeuroImage. 2002.V.15. № 1. P. 167 - 174.
  22. Rinne T., Degerman A., Alho K. Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study // NeuroImage.2005. V.26. № 1. P. 66 - 72.
  23. Liebenthal E., Ellingson M. L., Spanaki M. V., Prieto T.E., Ropella K.M., Binder J.R. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm // Neuro Image.2003. V.19. № 4. P. 1395 - 1404.
  24. Sabri M., Kareken D.A., Dzemidzic M., Lowe M.J., Melara R.D.Neural correlates of auditory sensory memory and automatic change detection // Neuro Image. 2004.V. 21. №  1. P. 69 - 74.
  25. Molholm S., Martinez A., Ritter W., Javitt D.C., Foxe J.J.The Neural Circuitry of Pre-attentive Auditory Change-detection : An fMRI Study of Pitch and Duration Mismatch Negativity generators // Cerebral Cortex. 2005. V.15. № 5. P. 545 - 551.
  26. Kasai K., Nakagome K., Itoh K., Koshida I., Hata A., Iwanami A., et al. Multiple generators in the auditory automatic discrimination process in humans // Neuroreport.1999. V.10. P. 2267 - 2271.
  27. Levänen S, Ahonen A, Hari R, McEvoy L, Sams M. Deviant auditory stimuli activate human left and right auditory cortex differently //Cerebral Cortex.1996. № 6. P. 288-296.
  28. Schall U., Johnston P., Todd J., Ward P.B., Michie P.T. Functional neuroanatomy of auditory mismatch processing: an event-related fMRI study of duration-deviant oddballs // Neuroimage2003. V.20. P. 729 - 736.
  29. Giard M.H., Perrin F., Pernier J., Bouchet P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study // Psychophysiology. 1990. V. 27. № 6. P. 627 - 640.
  30. Giard M.H., Perrin F., Pernier J. Scalp topographies dissociate attentional ERP components during auditory information processing //Acta Otolaryngol Suppl. 1991. V. 491. P. 168 - 174.
  31. Giard M.H., Lavikahen J., Reinikainen K., Perrin F., Bertrand O., Pernier J., Näätänen R. Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis // J. Cogn. Neurosci. 1995. V. 7. № 2. P. 133 - 143.
  32. McDermott K.B., Petersen S.E., Watson J.M., Ojemann J.G. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging //Neuropsychologia.2003. V.41. № 3 P. 293 ? 303.
  33. Petrushevskijj A.G., Majjorova L.A., Martynova O.V., Fedina O.N.Faktory, vlijajushhie na kharakteristiki  BOLD-otveta u pacientov posle insulta //Vestnik RNCRR. 2013. T. 4. № 13. s. 18.