350 rub
Journal Biomedical Radioelectronics №8 for 2014 г.
Article in number:
Features of using nonlinear dynamics methods for heart rate variability analysis
Authors:
V.S. Kublanov - Dr. Sc. (Eng), Professor, Head of the Research of Medical and Biological Engineering High-Tech Center, Ural Federal University named after first President of Russia B.N. Yeltsin (Ekaterinburg, Russia). E-mail: kublanov@mail.ru
V.I. Borisov - Dr. Sc. (Eng), Professor, Head of the Department of Radio Electronics Information Systems, Ural Federal University named after first President of Russia B.N. Yeltsin. E-mail: sergey_porshnev@mail.ru
S.V. Porshnev - Post-Graduate Student, Department of Radio Electronics Information Systems, Ural Federal University named after first President of Russia B.N. Yeltsin. E-mail: vi.borisov.official@gmail.com
V.I. Borisov - Dr. Sc. (Eng), Professor, Head of the Department of Radio Electronics Information Systems, Ural Federal University named after first President of Russia B.N. Yeltsin. E-mail: sergey_porshnev@mail.ru
S.V. Porshnev - Post-Graduate Student, Department of Radio Electronics Information Systems, Ural Federal University named after first President of Russia B.N. Yeltsin. E-mail: vi.borisov.official@gmail.com
Abstract:
In this article we considered the possibility of an approach identifying the status of patients different groups, using the Hurst exponents calculated for short-term series of heart rate variability (HRV). To solve this problem we examined the change of the Hurst exponent depending on the length of the time series to assess the adequacy of a time series of dynamic chaos model. We estimate the change Hurst exponent of HRV time series at rest andfunctional studiesfor the analysis of time series for different groups of patients of various nosological statuses. It is shown that the parameters of probability density functions changes in the values of Hurst exponent correspond to change the functional state of the patients. This indicates there is compliance between the distributions of changes Hurst exponent and changes in functional status of patients.
The results are valid for time series with independent Hurst exponent from the length of the time scale interval. If the value of Hurst exponent depends on the value of scale, it is a sign of the multifractal nature of the signal. Estimates are obtained using the multifractal analysis of time series of groups of healthy patients and in patients with arterial hypertension II - III degree (before treatment and after treatment course). Vector of changes in distribution the width of multifractal spectrum of time scales of the spectral components of HRV ill patients after treatment has a direction toward the corresponding indicators of healthy patients. This dynamics corresponds to changes in clinical parameters.
Pages: 30-37
References
- Heart rate variability. Standatds of Measurement, Physiological interpretation and clinical use // Circulation. 1996. V.93. P.1043-1065.
- Baevskij R.M. i dr. Analiz variabel'nosti serdechnogo ritma pri ispol'zovanii razlichny'x e'lektrokardiograficheskix sistem: Metodicheskie rekomendaczii // Vestnik aritmologii. 2001. № 24. S. 65-87.
- Vejn A.M. i dr. Vegetativny'e rasstrojstva: klinika, lechenie, diagnostika. M.: Mediczinskoe informaczionnoe agentstvo. 1998. 752 s.
- Goldberger A.L. et al. Fractal dynamics in physiology: alterations with disease and aging // Proceedings of the National Academy of Sciences of the United States of America. 2002. V.19. P. 2466-2472.
- Costa M. et al. Multiscale Analysis of Heart Rate Dynamics: Entropy and Time Irreversibility Measures // Cardiovascular Engineering. 2008. V.71. P. 18-25.
- Bernaola-Galvan P. et al. Scale Invariance in the Nonstationarity of Human Heart Rate // Physical Review. 2001. V.87. №16. P.168-175
- Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy // American Journal of Physiology, Heart and Circulatory Physiology. 2000. V.278. P.2039-2049.
- Kantelhardt J.W. et al. Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments // Physical Review. 2002. V.65. P.87-95.
- Takens F. Detecting strange attractors in turbulence // In Dynamical systems and turbulence. 1981. V.898. P. 366-381.
- Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D. 1983. V.9. P. 189-208.
- Hurst H.E. et al. Long-term Storage: An Experimental Study. London: Constable. 1965. 145 p.
- Mandelbrot B.B. Multifractals and 1 / f Noise: Wild Self - Affinity in Physics (1963-1976). New York: Springer-Verlag. 1999. 442 p.
- Ardashev A.V., Loskutov A.Ju. Prakticheskie aspekty' sovremenny'x metodov analiza variabel'nosti serdechnogo ritma. M.: ID MEDPRAKTIKA-M. 2011. 128 s.
- Malineczkij G.G., Potapov A.B. Sovremenny'e problemy' nelinejnoj dinamiki. M.: URSS. 2002. 335 s.
- Abry P., Flandrin P., Taqqu M.S., Veitch D. Self-similarity and long-range dependence through the wavelet lens / In P. Doukhan, G. Oppenheim, M.S. Taqqu (eds.). Theory and applications of long-range dependence. Boston: Birkhäuser. 2003. P. 527-556.
- Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion // IEEE Transactions on Information Theory. 1992. V. 38. P. 910-917.
- Kronover R.M. Fraktaly' i xaos v dinamicheskix sistemax. Osnovy' teorii. M.: Postmarket. 2000. 350 c.
- Abry P., Sellan F. The wavelet-based synthesis for the fractional Brownian motion // Applied and Computational Harmonic Analysis. 1996. № 3(4). P. 377-383
- Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit // Journal of the American Statistical Association. 1951. V. 46. P. 68-78.
- Kobzar' A.I. Prikladnaya matematicheskaya statistika. M.: FIZMATLIT. 2006. 816 s.
- Porshnev S.V., Koposov A.S. Ispol'zovanie approksimaczii Rozenblatta-Parzena dlya vosstanovleniya funkczii raspredeleniya neprery'vnoj sluchajnoj velichiny' s ogranichenny'm odnomodal'ny'm zakonom raspredeleniya // V mire nauchny'x otkry'tij. Ser. Matematika. Mexanika. Informatika. 2013. № 10(46). C. 235-260.
- Ihlen A. F. Introduction to multifractal detrended fluctuation analysis in Matlab // Frontiers in physiology. 2012. V. 3. P.141-150.
- Zagorujko N.G. Prikladny'e metody' analiza danny'x i znanij. Novosibirsk: IM SO RAN. 1999. 261 s.
- Xaspekova N.B. Diagnosticheskaya informativnost' monitorirovaniya variabel'nosti serdechnogo ritma // Vestnik aritmologii. 2003. № 32. R. 15-23.