350 rub
Journal Biomedical Radioelectronics №3 for 2014 г.
Article in number:
The Hilbert-Huang transform for biomedical signal analysis
Authors:
V.V. Boronoyev - Dr.Sc. (Eng.), Professor, Laboratory of Wave Diagnostics of Living Systems, Institute of Physical Material Science of the Siberian Branch of the RAS
V.D. Ompokov - Research Scientistr, Laboratory of Wave Diagnostics of Living Systems, Institute of Physical Material Science of the Siberian Branch of the RAS
Abstract:
Spectral analysis based on Fourier and Wavelet transforms is the most effective method of processing and analyzing biomedical signals. Both the transforms decompose within a fixed, predefined basis of functions independent of the shape of analyzed data. The most promising method of time-frequency analysis of the data is the Hilbert-Huang transform, which makes it possible to work with nonstationary and nonlinear data. The method is based on the mode decomposition of signals and the Hilbert transform. The process of decomposition gives a set of mode frequency regulated functions. The Hilbert transform of the obtained mode functions finds instantaneous amplitude, frequency and phase. The paper presents the results of the empirical mode decomposition and the Hilbert transform of pulse signals. It is shown that the Hilbert-Huang transform for processing and analyzing signals gives new possibilities to the detailed analysis of their frequency and time structure.
Pages: 40-44
References

 

  1. Boronoev V.V., Lebedintseva I.V. Osobennosti veyvlet-obrazov pul'sovykh signalov pri narushenii funktsionirovaniya reguliruyushchikh sistem organizma // Uspekhi sovremennoy radioelektroniki. 2008. № 2. S. 45-52.
  2. Boronoev V.V., Garmaev B.Z. Metod nepreryvnogo veyvlet-preobrazovaniya v zadache vydeleniya informativnykh tochek pul'sovogo signala // Biomeditsinskaya radioelektronika. 2009. № 3. S. 44-49.
  3. Huang N.E., Shen S.S.P. The Hilbert-Huang transform and its applications. World Scientific Publishing Co. Pte. Ltd. 2005. 311 p.
  4. Norden Huang et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proceedings of the Royal Society of London. 1998. V. A 454. R. 903-995.
  5. Huang N.E. An Introduction to Hilbert-Huang Transform: A Plea for Adaptive Data Analysis // Proceedings of the Royal Society of London. 1998. V. A 454. P. 873-902.
  6. Znakomstvo s metodom empiricheskoy modovoy dekompozitsii // MetaQuotes Software Corp. URL: http://www.mql5.com/ru/articles/439 (data obrashcheniya 03.03.2013).
  7. Davydov A.V. Preobrazovanie Gil'berta-Khuanga // URL: http://prodav.narod.ru/hht/index.html (data obrashcheniya 03.03.2013).