350 rub
Journal Biomedical Radioelectronics №3 for 2014 г.
Article in number:
A study of physicochemical properties of quantum dots InP/ZnS for ophthalmology
Authors:
V.O. Ponomarev - Ophthalmologist surgeon, JSC Ekaterinburg Centre IRTC «Eye Microsurgery». E-mail: ponomarev-mntk@mail.ru
A.S. Barybin - Ph.D.(Med.), Senior Research Scientist, FSIS «Yekaterinburg Research Institute of Viral Infections»
O.P. Ponomarev - Dr.Sc.(Eng.), Institute of Radio Engineering and Information Technology Ural Federal University n.a. the first President of Russia B.N.Yeltsin. E-mail: ponomarev7713@mail.ru
A.S. Vokhmintsev - Ph.D.(Phys.-Math.), Ural Federal University n.a. the first President of Russia B.N. Yeltsin, REC «Nanomaterials & Nanotechnology». E-mail: a.s.vokhmintsev@urfu.ru
G.V. Chashchin - Ph.D. (Biol.), JSC Ekaterinburg Centre IRTC «Eye Microsurgery». E-mail: cgv@eyeclinic.ru
I.A. Weinstein - Dr.Sc.(Phys.-Math.), Professor, Ural Federal University named after the first President of Russia B.N. Yeltsin, REC «Nanomaterials & Nanotechnology». E-mail: i.a.weinstein@urfu.ru
S.V. Porshnev - Dr.Sc.(Eng.), Professor, Ural Federal University named after the first President of Russia B.N. Yeltsin. E-mail: sergey_porshnev@mail.ru
Abstract:
One of the promising methods to improve (stabilization) the visual functions authors consider the use of artificial fluorophores, in particular, quantum dots (QDs ), as well as combinations of subretinal implant and QDs. In this paper we experimentally studied the physicochemical properties of the InP/ZnS QDs and their sterilization using track membranes for subsequent use in vitreoretinal surgery. The temperature depending of photoluminescence (PL) of the quantum dots in saline, are investigated. The spectrum of absorption and emission are stable in the temperature range from 22 ºС to 50 ºС, which points to the stability of the photodynamic characteristics of QDs in terms of the temperature homeostasis of the human body . An analyze of photodynamic properties the QDs with immunocompetent environment of saline with antibodies to influenza virus H1N1, are processed. We found that the presence of a foreign protein can change the photodynamic properties of QDs and negatively affect the process of the photo transduction. The absorption spectra and emission QDs with biological tissues eyes, in particular, with biopsy specimens of the retina, subretinal fluid and vitreous humor, are investigated. Established a negligible impact anatomical substrate eyeball to photodynamic properties of the QDs. To visualize the conformational structure of the solution of QDs and analyze the conglomerates of QDs, comparing the size range of QDs with passports that they, as well as measuring the distance between the QDs for the occurrence of FRET - effect, we used the method of atomic force microscopy. The average diameter of QDs, the distance between adjacent QDs amounted to 25-40 nm, which is sufficient to cause FRET- effect. We used a method of sterilization the QDs by means of track membranes with a pores diameter 42,3 microns. The results showed no bacterial growth. The physicochemical properties of QDs indicate a good promising of their using for degenerative retinal diseases.
Pages: 23-31
References

  1. Schellini S.A., Durkin S.R., Hoyama E., et al. Prevalence and causes of visual impairment in a Brazilian population: the Botucatu Eye Study // BMC Ophtalmol. 2009. № 9. P. 8.
  2. West S., Sommer A. Prevention of blindness and priorities for the future // Bull. World Health Organ. 2001, № 79. P.244-248.
  3. Patel D.K., Tajunisah I., Gilbert C., Subrayan V. Childhood  blindness and severe visual impairment in Malaysia: a nationwide study // Eye. 2001. № 25. P.436-442.
  4. Gilbert C., Foster A., Negrel A.D., Thylefors B. Childhood blindness: a new form for recording causes of visual loss in children // Bull. World Health Organ. 1993. № 71. P.485-489.
  5. den Hollander A.I., Black A., Bennett J., Cremers F.P. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal Dystrophies // J. Clin. Invest. 2010. № 120. P.3042-3053.
  6. Nasledstvenny'e i vrozhdenny'e zabolevaniya setchatki i zritel'nogo nerva / Pod red. A.M. Shamshinovoj. M.: Mediczina. 2001. 528 s.
  7. Camiel J. F. et al. Autosomal Recessive Bestrophinopathy. Differential Diagnosis and Treatment Options // Ophthalmology. 2013. V. 120. № 4. P.809-814.
  8. Zak A. Implanty' setchatki: ot t'my' k svetu // Ximiya i zhizn'. 2013. № 7. S. 18-19.
  9. Noda T., Sasagawa K., Tokuda T., et al. Smart electrode array device with CMOS multy-chip architecture for neural interface // Electronics Letters. 11th October 2012. V. 48. № 21. P. 1238.
  10. Klimov V.V. Nanoplazmonika. M.: FIZMATLIT. 2010. 480 s.
  11. Smita Pathak et al. Quantum dot labeling and imaging glial fibrillary acidic protein intermediate filaments and gliosis in the rat neural retina and dissociated astrocytes // J. Nanosci. Nanotechnol. 2009. V. 9. № 8. R. 5047-5054.
  12. Tsuji J.S. et al. Research strategies for safety evaluation of nanomaterials. Part IV. Risk assessment of nanoparticles // Toxicol. Sci. 2006. V. 89. № 1. P.42-50.
  13. XlebczovN.G., Dy'kman L.A. Bioraspredelenie i toksichnost' zoloty'x nanochasticz // Rossijskie nanotexnologii. 2011. T. 6. № 1-2. S. 39-59.
  14. Kim J.H. et al. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity // Nanotechnol. 2009. V. 20 P. 505101.
  15. Maksimov E.G. i dr. Gibridny'e sistemy' iz kvantovy'x tochek i fotochuvstvitel'nogo belka fikoe'ritrina // Rossijskie nanotexnologii. 2010. T. 5. № 7-8. S. 107-112.
  16. Rakovich A. et al. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots // Nano Lett. 2010. V. 10. P.2640-2648.
  17. Kim E.S, Pons T., Medintz I.L., and Mattoussi H. Biosensing with luminescent semiconductor quantum dots // Sensors. 2006. V. 6. Ch. 6. P.925-953.
  18. Auffan M., et al. Towards a definition of inorganic nanoparticle from an environmental, health and safety perspective // Nature Nanotech. 2009. V. 4. P.634-641.
  19. Prodanchuk N.G., Balan G.M. Nanotoksikologiya: sostoyanie i perspektivy' issledovanij // Sovremenny'e problemy' toksikologii. 2009. № 3-4. S. 4-20.
  20. Allen T.D. et al. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm // J. Of Cell Science. 2000. V.113. P. 1651-1659.
  21. Chashhin G.V., Ponomarev V.O., Nosov S.V., Bary'bin A.S., Vakshtejn M.S., Dezhurov S.V. Modelirovanie opticheskix xarakteristik iskusstvenny'x fluoroforov dlya kvantovoj nanoxirurgii setchatki glaza / Sb. statej XVIII NPK oftal'mologov po voprosam xirurgicheskogo i konservativnogo lecheniya zabolevanij organa zreniya, 24 dekabrya 2010. Ekaterinburg. Izd. Dom «Avtograf». 2010. S. 105-106.
  22. McIntosh C.M., et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters // J. Am. Chem. Soc. 2001. V. 123. P. 7626-7629.
  23. Borkovskaya L.V. i dr. Vliyanie prisoedineniya biomolekul na fotolyuminesczentny'e i strukturny'e xarakteristiki  kvantovy'x tochek CdSe-ZnS // Fizika i texnika poluprovodnikov. 2009. T. 43. Vy'p. 6. S. 804-810.
  24. Galanov A.I. i dr. Razrabotka magnitoupravlyaemoj sistemy' dlya dostavki ximiopreparatov na osnove nanorazmerny'x chasticz zheleza // Sibirskij onkologicheskij zhurnal. 2008. №3 (27). s. 50-57.
  25. Olson J.L. Method for stimulating retinal response using photoactive devices. WO/2008/106605.
  26. Olson J.L., et al. Intravitreal Silicon-Based Quantum Dots as Neuroprotective Factors in a Model of Retinal Photoreceptor Degeneration / IOVS. August 2012. V. 53. № 9. P.5713-5721.
  27. Li L., Reiss P. One Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection // J. Am. Chem. Soc. 2008. V. 130. P.11588-11589.
  28. Liu B.R. et al. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides // Colloids and Surfaces B: Biointerfaces. 2013. V. 11. P. 162-170.
  29. Govorov A.O., and Carmeli I. Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles: Plasmon Enhancement Effect // Nano Letters. 2007. V. 7. № 3. P.620-625.
  30. Shubina T.V. i dr. Plazmonny'e e'ffekty' v nanostrukturax na osnove In(Ga)N // Uspexi fizicheskix nauk. 2009. T. 179. № 9. S. 1007-1012.
  31. Heath H., Beck T.C. Chemical composition of subretinal fluid // Brit. J. Ophthal. 1962. V.46. P.385-396.