350 rub
Journal Biomedical Radioelectronics №3 for 2014 г.
Article in number:
The EEG-signals components separation on the chain extremum base of the local wavelet-transformation matrix
Authors:
Ya.A. Turovskyi - Ph.D. (Мed.), Associate Professor, Head of Laboratory, Voronezh State University
Abstract:
The given paper presents a method to reveal the peculiarities of the EEG signal in the time-frequency domain. The method is based on the allocation of local maxima matrix W2(a,b) chains, reflecting the presence of expressed frequency components in a signal, which change their parameters (frequency and energy) in time. Frequency-limited with local minima chains, a chain of local maxima forms the feature of the signal, which may be of interest from the point of view of the interpretation of the clinical and physiological phenomenon. There are proposed two ways of limiting the peculiarities of the signal's frequency: reset all values of the matrix W2(a,b) outside the local minima, who are limiting features of the signal, and the approximation of fronts of the scalograms (local wavelet spectra) on segments from the local maximum to local minimum. Localization of the signal feature in time also has two ways of implementation: the localization of the event, to which there can be attributed both stimulation of the user, and a number of endogenous phenomena, such as the emergence of a specific EEG, EMG, oculographic or other pattern activity), combined with different shifts in activity of device-effectors, with which the user interacts within the system of biological feedback and/or brain-computer interface, and the allocation of areas of convergence of extrema in the matrix W2(a,b) describing the appearance or extinction of the chain of local maxima. Method and algorithms based on it were applied for the analysis of the background EEG and visual evoked potentials. It is demonstrated that the proposed method allows to significantly expand the understanding of the mechanisms of neural activity forming EEG: it highlights presence of several oscillators forming α rhythm, and shows the features of the dynamics of their electrogenesis. Also, there's shown a presence of components in the VEP, slowing oscillatory activity and fading within about 0.1 sec.
Pages: 9-15
References

  1. Van Vugt M.K., Sederberg P.B., Kahana M.J. Comparison of spectral analysis methods for characterizing brain oscillations // Journal of Neuroscience Methods. 2007. V. 162. P. 49-63.
  2. Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?  //  Journal of Neuroscience Methods. 2004. V. 137. P. 321-32. 
  3. Suvorov N.B., Bozhokin S.V. Informativnost' kolebatel'nykh perekhodnykh protsessov v elektroentsefalogramme cheloveka // Informatsionno-upravlyayushchie sistemy. 2009. № 1. S. 66-70.
  4. Minchev Z., Dukov G., Georgiev S. EEG Spectral Analysis in Serious Gaming: An Ad Hoc Experimental Application  // Bioautomation. 2009. V. 13 (4). P. 79-88.
  5. Osnovy psikhofiziologii: Uchebnik / Otv. red. Yu.I. Aleksandrov. M.: INFRA-M. 1997. 349 s.
  6. Gnezditskiy V.V. Obratnaya zadacha EEG i klinicheskaya elektroentsefalografiya. M.: MYeDpress-inform. 2004. 626 s.
  7. Kozlov V.I., Azizov G.A., Gurova O.A., Litvin F.B. Lazernaya dopplerovskaya floumetriya v otsenke sostoyaniya i rasstroystv mikrotsirkulyatsii krovi. M. 2012. 32 s.
  8. Zenkov L.R. Klinicheskaya elektroentsefalografiya (s elementami epileptologii). M.: MYeDpress-inform. 2011. 356 s.
  9. Baevskiy R.M., Polenov B.I. Ritm serdtsa kak indikator vegetativnogo disbalansa // Fiziologiya cheloveka. 1978. T. 4. № 6. S. 1096-1098.
  10. Murashko V.V., Strutynskiy A.V. Elektrokardiografiya. M.: MYeDpress-inform. 2001. 324 s.
  11. http://www.neurosoft.ru/rus/product/neuron-spectrum-5/index.aspx
  12. http://www.medicom-mtd.com/htm/Products/eega_temp.html
  13. Gnezditskiy V.V. Vyzvannye potentsialy mozga v klinicheskoy praktike. Taganrog: TRTU. 1997. 252 s.
  14. Turovskiy Ya.A. Programma PikWave 1.0. Zaregistrirovana v Rossiyskom agentstve po patentam i tovarnym znakam, registratsionnyy № 2006613500.
  15. Turovskiy Ya.A., Semyenov A.G., Kiseleva Ye.V., Khoroshikh N.V. Programma Wavemax 1.0. Zaregistrirovana v Rossiyskom agentstve po patentam i tovarnym znakam, registratsionnyy № 2012614720.
  16. Turovskiy Ya.A., Kurgalin S.D., Vakhtin A.A. Obrabotka signala elektroentsefalogrammy na osnove analiza chastotnykh zavisimostey i veyvlet-preobrazovaniya // Biomeditsinskaya radioelektronika. 2012. № 12. S. 39-45.
  17. Turovskiy Ya.A., Kurgalin S.D., Maksimov A.V., Semye-nov A.G. Analiz elektroentsefalogramm na osnove issledovaniya izmenyayushcheysya vo vremeni struktury lokal'nykh maksimumov matritsy veyvlet-koeffitsientov // Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser. Sistemnyy analiz  i informatsionnye tekhnologii. 2012. № 2. S. 69-73.
  18. Turovskiy Ya.A., Kurgalin S.D., Semyenov A.G. Dinamika tsepochek lokal'nyx makcimumov cpektpov elektpoentsefalogpamm cheloveka // Biofizika. 2014. T. 59. Vyp. 1. S. 185-190.