350 rub
Journal Biomedical Radioelectronics №12 for 2014 г.
Article in number:
Analysis of the possibilities of methods of theoretical dosimetry in the evaluation of biological action and therapeutic use of low-frequency electromagnetic fields
Authors:
M.Yu. Gotovskiy - Ph.D. (Eng.), General Director, Center of Intellectual Medical Systems «IMEDIS», Moscow
S.Yu. Perov - Ph.D. (Biol.), Federal State Educational Institution of Higher Professional Education M.V. Lomonosov Moscow State University
O.V. Belaya - Junior Research Scientist, Federal State Budgetary Organization «RAMS Research Institute of Occupational Health»
Abstract:
Now days there are a lot of physiotherapeutic methods where used low frequency electric and magnetic fields for prevention, treatment and rehabilitation. Analysis of the literature data on the methods of theoretical dosimetry in evaluation of biological effects of electromagnetic fields in the frequency range up to 10 kHz with respect to the justification of their therapeutic use is presented. The advantages and disadvantages of modern numerical methods for low-frequency electromagnetic field dosimetry are considered. Performed analysis of theoretical approaches to the evaluation of the induced currents and algorithms of numerical simulation showed that quasi-static finite-difference time-domain method is most suitable for assessing interaction of low-frequency electromagnetic fields with living organisms.
Pages: 12-17
References

 

  1. Illarionov V.E., Simonenko V.B. Sovremenny'e metody' fizioterapii. M.: Mediczina. 2007.
  2. Illarionov V.E. Magnitoterapiya. M.: Librokom. 2009.
  3. Habash R.W.Y. Bioeffects and Therapeutic Applications of Electromagnetic Energy. CRC Press, Taylor & Francis Group. LLC. 2008.
  4. Stuchly M.A., Dawson T.W. Interaction of low-frequency electric and magnetic fields with the human body // Proc. IEEE. 2000. V.88. №5. P. 643-664.
  5. Hagmann M.J., Babij T.M. Noninvasive measurement of current in the human body for electromagnetic dosimetry // IEEE Trans Biomed Eng. 1993. V.40. № 5. P.418 ? 423.
  6. Glover P.M., Bowtell R. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients // Phys. Med. Biol. 2008. V.53. № 2. P. 361 - 373.
  7. Gotovskij M.Ju., Perov S.Ju. Vozmozhnosti ispol'zovaniya chislenny'x metodov v oczenke vozdejstviya nizkochastotnoj impul'snoj magnitoterapii // Tradiczionnaya mediczina. 2010. №2. S.4 - 8.
  8. Kuzneczov A.N. Biofizika nizkochastotny'x e'lektromagnitny'x vozdejstvij. M.: MFTI. 1994.
  9. Kudryashov Ju.B., Perov Ju.F., Rubin A.B. Radiaczionnaya biofizika: radiochastotny'e i mikrovolnovy'e e'lektromagnitny'e izlucheniya. M.: FIZMATLIT. 2008.
  10. Extremely low frequency fields. (Environmental health criteria; 238). World Health Organization. 2007.
  11. Bernhardt J. The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz // Radiat. Environ. Biophys. 1979. V.16. №4. P.309 - 323.
  12. Andreuccetti D, Zoppetti N. Quasi-static electromagnetic dosimetry: from basic principles to examples of applications // Int. J. Occup. Saf. Ergon. 2006. V. 12. № 2. P. 201 - 215.
  13. Stuchly M.A., Gandhi O.P. Inter-laboratory comparison of numerical dosimetry for human exposure to 60 Hz electric and magnetic fields // Bioelectromagnetics. 2006. V.21. №3. P.167 - 174.
  14. Yamazaki K., Kawamoto T., Fujinami H., Shigemitsu T. On the method of investigating human exposure to nonuniform magnetic field // Elec. Eng. Jp. 2008. V.164. №3. P. 1 - 11.
  15. Rubczova N.B., Perov S.Ju. Teoreticheskaya dozimetriya radiochastotny'x e'lektromagnitny'x polej pri oczenke biologicheskogo dejstviya. Vozmozhny'e pogreshnosti // Biomediczinskaya radioe'lektronika. 2012. №2. S.12 - 21.
  16. Hirata A., Wake K., Watanabe S., Taki M. In situ electric field and current density in Japanese male and female models for a uniform magnetic field exposures // Rad. Prot. Dosimetry. 2009. V.135. № 4. P.272 - 275.
  17. Maruyama K., Suzuki Y., Taki M., Wake K., Watanabe S., Hashimoto O. Coupling characteristic of adult and children with non-uniform magnetic field // Proc. XXIX URSI General Assembly. 2008. KAE.2.
  18. Dimbylow P. Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields // Phys. Med. Biol. 2005. V.50. №6. P.1047 - 1070.
  19. Chen K.M., Chuang H.R., Lin C.J. Quantification of interaction between ELF-LF electric fields and human bodies // IEEE Trans. Biomed Eng. 1986. V.33. №8. P.746 - 756.
  20. De Moerloose J., Dawson T.W., Stuchly M.A. Application of the finite difference time domain algorithm to quasi-static field analysis // Radio Sci. 1997. V.32. № 2. P.329 - 341.
  21. Wagner T.A., Zahn M., Grodzinsky A.J., Pascual-Leone A. Three-dimensional head model simulation of tanscranial magnetic stimulation // IEEE Tran. Bio. Med. Eng. 2004. V.51. № 9. P.1586 - 1589.
  22. Chen X.L., Benkler S., Li C., Chavannes N., Kuster N. Low frequency electromagnetic field exposure study with poseable human body model // IEEE Intern. Symp. Electromagnetic Compatibility (EMC). 2010. P.702 - 705.