350 rub
Journal Biomedical Radioelectronics №9 for 2013 г.
Article in number:
High-resolution electrocardiography. Task. Problem. Prospects
Authors:
Y.V. Gulyaev - member, Presidium of the Russian Academy of Sciences, Academician of the Russian Academy of Sciences, Professor, Director of the Kotel-nikov institute of Radio Engineering and Electronics of RAS (Moscow). E-mail: gulyaev@cplire.ru
K.V. Zaichenko - Doctor of Science (Technology), professor, head of the department of medical radioelectronics of St. Petersburg State University of aerospace instrumentation. E-mail: kvz_41@aanet.ru
Abstract:
In the history of the establishment and improvement of electrocardiography clear tendency to increase the information content of the recorded signals. This trend is followed in varying degrees and modern methods of electrocardiography with high resolution. The result of overcoming the drawbacks of these methods and the further development trend of increasing resolution of hardware, software and algorithmic analysis of the fine structure ECG signal has been the emergence of a new method  high-resolution electrocardiography (ECG UHR). This was the result of more than twenty years of the team's leading scientific school «electronic and information tools to evaluate physiological parameters of living systems». The method of ECG UHR, ECG signal provides registration for the entire length of the cardiac cycle on a larger amplitude and frequency ranges in terms of interference. The minimum limit of the amplitude range today is about ten nV, the maximum upper limit of the frequency range of more than 2000 Hz. Such registration parameters are achieved through the use of EX-the-art hardware components of today's electronics, opportunities of digital signal processing, the optimal combination of analog and digital methods and means of processing information signals, as well as developing a number of new circuit design, algorithmic and software solutions. The development of primary processing units with high pacing is still unattainable characteristics allowed to allocate signals containing not previously available to researchers information, which, in turn, required the implementation of new efficient methods for extracting this information for secondary processing of bioelectric signals of different nature. This will also facilitate sharing ECG UHR magnetocardiography and methods are sensitive to extracellular currents inside and heart.In studies on experimental animals with artificially induced kardiopatologiyami and analysis of the results were used standard techniques such secondary processing such as spectral analysis, histogram distributions and wavelet analysis signals obtained during experimental pacemaker records. They unequivocally confirmed the possibility of fixing the method of ECG UHR onset of ischemia at an earlier stage than is possible with existing ECG techniques. Summarizes the specific objectives of the ECG UHR encountered during its implementation, which can be formulated today, and some of which are already reflected in the papers published in this issue, complex, non-trivial scientific problems to be solved in the near future, as well as perspective of the ECG UHR in scientific research and its implementation in healthcare practice.
Pages: 5-15
References

 

  1. Zajchenko K.V., Zyabliczkij A.V., Krasnova A.I., Sergeev T.V. Ot strunnogo gal'vanometra do e'lektrokardiografii sverxvy'sokogo razresheniya // Biomediczinskaya radioe'lektronika. 2010. № 9. S. 62
  2. Janushkevichus Z.I., Chirejkin L.V., Pranyavichus A.A. Dopolnitel'no usilennaya kardiogramma. L.: Mediczina. 1990. 192 s.
  3. Pranevichius A.A. P-terminal index based on the additionally amplified ECG in healthy persons and ischemic heart disease patients // Kardiologiia. 1981. V. 21. № 9. P. 44-48.
  4. Novy'e metody' e'lektrokardiografii. Seriya: Mir biologii i medicziny' / pod red. Gracheva S. V., Ivanova G.G., Sy'rkina A.L. M: Texnosfera. 2007. 552 s.
  5. Narayanaswamy S. High Resolution Electrocardiography // Indian Pacing Electrophysiology Journal. 2002. V. 2. № 2.
  6. Lee G.J. ECG Techniques and Technologies // Emerg. Med. Clin. 2006. № 24.
  7. Pettersson J., Pahlm O., Carro E., et al. Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. The American College of Cardiology Foundation // J. Am. Coll. Cardiol. 2000. V. 36. P. 1827-1834.
  8. Boyle D., Carson P., Hamer D. High Frequency Electrocardiography in Ischsemic Heart Disease // Brit. Heart. J. 1966. № 28. P. 539.
  9. Langner P.H. (Jr.) The value of high fidelity electrocardiography using the cathode ray oscillograph and an expanded time scale // Circulation. 1952. № 5. P. 249.
  10. Abboud S., Cohen J., Selwyn A., et al. Detection of transient myocardial ischemia by computer analysis of standard and signal-averaged high-frequency electrocardiograms in patients undergoing percutaneous transluminal coronary angioplasty // Circulation. 1987. V. 76. P. 585-596.
  11. Abboud S. High-frequency electrocardiogram analysis of the entire QRS in the diagnosis and assessment of coronary artery disease // Prog. Cardiovasc. Dis. 1993. № 35. P. 311-328.
  12. Schlege T., Kulecz W., DePalma J., et al. Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease // Mayo Clin. Proc. 2004. № 79. P. 339-350.
  13. Zaichenko K.V., Kulin A.N., Jarinov O.O. Estimation of micropotentials of electrocardiograms of diagnostics of heart diseases // Proceedings 1 European medical and biological engineering conference (EMBEC-99). Austria. Vienna. 1999.
  14. Zajchenko K.V., Sergeev T.V. Analogovaya obrabotka e'lektrokardiosignalov so sverxvy'sokim razresheniem // Izvestiya vy'sshix uchebny'x zavedenij Rossii. Ser. Radioe'lektronika. SPb.: SPbGE'TU «LE'TI». 2009. № 3. S. 27-34.
  15. Sergeev T. V. Polosovoj fil'tr s reguliruemy'mi parametrami dlya registraczii i obrabotki e'lektrokardiosignalov po metodu E'KG SVR // Nastoyashhij sbornik.
  16. Krasnova A.I. Prikladnaya informatika v uchebnoj rabote kafedry' mediczinskoj radioe'lektroniki GUAP i v nauchny'x issledovaniyax po vtorichnoj obrabotke bioe'lektricheskix signalov // Nastoyashhij sbornik.
  17. Zajchenko K.V., Gorelova N.A., Omel'chenko V.P., Polivanny'j F.G. Chastny'e resheniya proczedur vtorichnoj obrabotki E'KS po metodu E'KG SVR dlya poiska vremenny'x xarakteristik markerov kardiopatologij // Nastoyashhij sbornik.
  18. Zajchenko K.V. Chuvstvitel'ny'e e'lementy' so strukturnoj izby'tochnost'yu. L.: Izd-vo LGU. 1990. 200 s.
  19. Zajchenko K.V., Zyabliczkij A.V. Vy'sokotochnaya sinxronizacziya e'lektrokardiosignalov sverxvy'sokogo razresheniya // Izvestiya vy'sshix uchebny'x zavedenij Rossii. Ser. Radioe'lektronika. SPb.: SPbGE'TU «LE'TI». 2010. № 1.
  20. Begun P.I., Krivoxizhina O.V., Zyabliczkij A.V. Sovremenny'e metody' diagnostiki i predoperaczionnogo prognozirovaniya sostoyaniya biologicheskix ob''ektov v kardiologii // Nastoyashhij sbornik.
  21. Kuzneczov A.A., Kiselev N.N., Gumenny'j V.G. Metody' poiska xarakterny'x tochek e'lektrokardiosignala i statisticheskogo analiza ego morfologii // Nastoyashhij sbornik.
  22. Galagudza M.M., Zajchenko K.V. E'ksperimental'ny'e issledovaniya na zhivotny'x kak e'tap sozdaniya metodologii i instrumentariya funkczional'noj e'lektrokardiografii ishemii // Nastoyashhij sbornik.
  23. Gulyaev Ju.V. Maslennikov Ju.V., Primin M.A., Slobodchikov V.Ju. i dr. Magnitograficheskie sistemy' na osnove SKVID dlya klinicheskix primenenij // Biomediczinskaya radioe'lektronika. 2010. № 9.
  24. Poyasov I.Z. Primenenie metoda amplitudnoj i chastotnoj modulyaczii krovotoka pri issledovanii sosudisty'x funkczij sistemy' krovoobrashheniya // Nastoyashhij sbornik.
  25. Kuly'gina L.A. Radioe'lektronny'e i biotexnicheskie texnologii v uchebnoj rabote kafedry' mediczinskoj radioe'lektroniki GUAP i v nauchny'x issledovaniyax po adaptivnoj pervichnoj obrabotke bioe'lektricheskix signalov // Nastoyashhij sbornik.