350 rub
Journal Biomedical Radioelectronics №4 for 2013 г.
Article in number:
Water-containing shields for protection of users of consumer and industrial SHF sources
Authors:
Y.T.A. Al-Ademi, T.A. Pulko, M.V. Davydov, N.V. Nasonova, L.M. Lynkov
Abstract:
Grimnes S., Martinsen O. G. Bioimpedance and bioelectricity basics. N.Y.: Academic press. 2000. Ursula G. Kyle, Ingvar Bosaeus, Antonio D. De Lorenzo, Paul Deurenberg, Marinos Elia. Bioelectrical impedance analysis part I: review of principles and methods. Clinical Nutrition 2004. Issue 23. P. 1226 - 1243. Рубин А.Б. Биофизика. М: Наука. 2004. Т.1. 463 с. Т.2. 463 с. Девятков Н.Д. Голант М.Б. Бецкий О. В. Миллиметровые волны и их роль в процессах жизнедеятельности. М.: Радио и связь. 1991. 168 с. Гришенцев А.Ю. Регистрация проявления реакции человека на стандартные тесты раздражители при помощи прибора ИПЧ: Сб. трудов конференции. СПб.: ГУП НИИФК. 2005. Кисель В.П. Микродеформация молекулярных и клеточных структур - механизм влияния терапевтических и сверхмалых доз физико-химических воздействий на биологические ткани: Сб. научных трудов. Вып. 10. Нетрадиционные ресурсы, инновационные технологии и продукты. М. 2003. 142 с. Белик Д.В., Белик К.Д. Контрактивная биоэлектрокинетика. Аспекты лечебного применения физиовоздействий. Новосибирск: Сибирское книжное изд-во. 2005. 304 с. Давыдов М.В., Осипов А.Н. Импедансные характеристики кожи и подкожных тканей. Междунар. науч.-техн. конф. «Медэлектроника 2008. Средства медицинской электроники и новые медицинские технологии». Мн.: БГУИР. 2008. С. 366 - 373. Пулко Т.А., Насонова Н.В., Давыдов М.В., Осипов А.Н., Лыньков Л.М. Композиционные влагосодержащие структуры для имитации биологической ткани // Биомедицинская радиоэлектроника. 2011. №3. С. 9 - 15. Яшкичев В.И. Вода, движение молекул, структура, межфазные процессы и отклик на внешнее воздействие. М.: Агар. 1998. Борботько Т.В., Колбун Н.В., Терех И.С., Лыньков Л.М., Гусинский А.В. Исследование СВЧ-характеристик биологических объектов: Труды Междунар. науч.-техн. конф. «Медэлектроника-2004. Средства медицинской электроники и новые медицинские технологии». Минск, 9-10 ноября 2004 г. Минск. 2004. С. 65 - 68. An increasing number of sources of the electromagnetic radiation (EMR) of SHF frequency band raises a problems of a negative impact of the microwaves upon the humans health, especially with reference to the users and personnel who work with electronic equipment (i.e. mobile phones, personal computers, medical and industrial SHF-devices). The aim to imitate the absorption and reflection characteristics for biological tissues using liquid-containing composite materials determines the opting of the properties of their components (such as a composition and concentration of the solution), structure parameters of the porous fiber matrix and design features of the electromagnetic shield in order to obtain the comparable characteristics of EMR reflection and attenuation. The work is aimed at a comparative analysis of the electrical macroproperties of the developed composite materials and biological tissues in the frequency range of 20 Hz-1 GHz and at study of the shielding effectiveness of electromagnetic shields based on the developed composite materials within the frequency band of 0.7-17.0 GHz. A comparative analysis of the complex impedance of cutaneous and subcutaneous coverings of 15 people against the characteristics of fibrous materials (tightened fabric) 1.6 mm thick with a medium pore dimensions around 10-100 m, filled with the aqueous solutions of metal salts with various concentration has revealed that the developed liquid-containing composite materials possess a complex impedance about 0.25 kOhms (±0.05) in the frequency range of 20 kHz-1 MHz which corresponds to the average characteristics of the tested men. The measurement results show, that the liquid-containing composite material 1.6 mm thick is characterized by the transmission coefficient S21 of -2.0?-10.0 dB and the reflection coefficient about -8.0 dB in the frequency range of 0.7-17.0 GHz. These results are in good correlation with the shielding characteristics of the biological tissues, obtained in the early papers. The pyramid-shaped shield made of the liquid-containing materials is characterized by a higher total shielding efficiency (for 10 dB in average) and lower reflection coefficient -2,0?-28,0 dB in the frequency range of 2.0..8.0 GHz comparing to the flat-shaped shield. As a result of this work the composite materials are developed with the impedance characteristics in the SHF range which imitate the properties of the biological tissues (cutaneous and subcutaneous coverings). On the ground of the obtained results we suggest application of the developed materials for biomedical experiments and studies of EMR SHF interaction with the biological tissues, as well as their application for EMR shields and absorbers intended to protect the users against the EMR of consumer and industrial SHF sources.
Pages: 50-56
References
  1. Grimnes S., Martinsen O. G. Bioimpedance and bioelectricity basics. N.Y.: Academic press. 2000.
  2. Ursula G. Kyle, Ingvar Bosaeus, Antonio D. De Lorenzo, Paul Deurenberg, Marinos Elia.Bioelectrical impedance analysis part I: review of principles and methods. Clinical Nutrition 2004. Issue 23. P. 1226 - 1243.
  3. Rubin A.B. Biofizika. M: Nauka. 2004. T.1. 463 s. T.2. 463 s.
  4. Devjatkov N.D. Golant M.B. Beckijj O. V. Millimetrovye volny i ikh rol v processakh zhiznedejatelnosti. M.: Radio i svjaz. 1991. 168 s.
  5. Grishencev A.JU. Registracija projavlenija reakcii cheloveka na standartnye testy razdrazhiteli pri pomoshhi pribora IPCH: Sb. trudov konferencii. SPb.: GUP NIIFK. 2005.
  6. Kisel V.P. Mikrodeformacija molekuljarnykh i kletochnykh struktur - mekhanizm vlijanija terapevticheskikh i sverkhmalykh doz fiziko-khimicheskikh vozdejjstvijj na biologicheskie tkani: Sb. nauchnykh trudov. Vyp. 10. Netradicionnye resursy, innovacionnye tekhnologii i produkty. M. 2003. 142 s.
  7. Belik D.V., Belik K.D. Kontraktivnaja bioehlektrokinetika. Aspekty lechebnogo primenenija fiziovozdejjstvijj. Novosibirsk: Sibirskoe knizhnoe izd-vo. 2005. 304 s.
  8. Davydov M.V., Osipov A.N.  Impedansnye kharakteristiki kozhi i podkozhnykh tkanejj. Mezhdunar. nauch.-tekhn. konf. «Medehlektronika 2008. Sredstva medicinskojj ehlektroniki i novye medicinskie tekhnologii». Mn.: BGUIR. 2008. S. 366 ? 373.
  9. Pulko T.A., Nasonova N.V., Davydov M.V., Osipov A.N., Lynkov L.M. Kompozicionnye vlagosoderzhashhie struktury dlja imitacii biologicheskojj tkani // Biomedicinskaja radioehlektronika. 2011. №3. S. 9 - 15.
  10. JAshkichev V.I. Voda, dvizhenie molekul, struktura, mezhfaznye processy i otklik na vneshnee vozdejjstvie. M.: Agar. 1998.
  11. Borbotko T.V., Kolbun N.V., Terekh I.S., Lynkov L.M., Gusinskijj A.V. Issledovanie SVCH-kharakteristik biologicheskikh obektov: Trudy Mezhdunar. nauch.-tekhn. konf. «Medehlektronika-2004. Sredstva medicinskojj ehlektroniki i novye medicinskie tekhnologii». Minsk, 9-10 nojabrja2004 g. Minsk. 2004. S. 65-68.