350 rub
Journal Biomedical Radioelectronics №7 for 2012 г.
Article in number:
The conceptual model of the method of nondestructive measurement of magnetic fields inside biological objects
Keywords:
nondestructive measurement of the magnetic fields
a conceptual model of the induction method of recording magnetic fields
direct and inverse of the Radon transform
magnetotherapy
Authors:
A.A. Zhilnikov, T.A. Zhilnikov, V.I. Zhulev
Abstract:
The quality of magnetotherapy is largely dependent on the correct choice of parameters defining the impact of the field, which is achieved by using the maximum positive effect of physiotherapeutic. As a consequence, the requirement for the formation of a large field uniform with respect to the size of the zone of influence of a biological object (veins, arteries and capillaries) determines the complex structure of the total magnetotherapeutic equipment, which is a combination of inductors connected to each other in certain ways. In this regard, during the session magnetotherapeutic important to know the parameters given by the real distribution of the generated field in the space of biological object and the law of its change over time, which requires the use of direct nondestructive methods of magnetic measurements of space, excluding the mechanical penetration inside.
The analysis of the known direct methods of the nondestructive measuring appropriately specifies on the necessity of the use of method of computer tomography, which is based on the particular case of the Radon transform and is a mathematical tool for imaging the distribution of physical value in a volume. As its name implies, this method is investigated with a three-dimensional space of biological objects in a set of of sections, so that the dimension of the problem is reduced to two-dimensional (tomographic), which involves the use of very simple mathematical description of the private vehicle of the Radon transform, in which the integration is performed along the line, and how consequence of the basic integral equation is solved first order. The resulting tomographic description of this problem is the realization of magnetic measurements is, firstly, that in practice the measurement of magnetic induction (or in other words, the flux density) is possible only through a registration process of the magnetic flux, which involves the integration over the area rather than in a straight line and, secondly, method CT imaging involves the scalar distributions, and the magnetic induction is the distribution of vector magnitude.
Thus, leaning on a method of the computer tomography, the specified circumstances of a problem cause need for a deviation from the private description of mathematical apparatus of transformation of Radon and use of its general view finished under a problem of registration of vector function.
To solve the problems indicated in the article offers a conceptual model of the magnetic measurement method, which is the mathematical apparatus of the Radon transform, adapted and modified by an original method of nondestructive volume registration at each point of the three-dimensional vector function of the induction of the uniform changing in time magnetic field.
In conclusion, a synthesis of the results and obtained on the basis of equality are encouraged to use to obtain the Cartesian components of the distribution vector function of the magnetic induction at each point of biological object.
Pages: 37-44
References
- Системы комплексной электромагнитотерапии. Учебное пособие для вузов / под ред. А.М. Беркутова,В.И.Жулёва, Г.А. Кураева, Е.М. Прошина.М: Лаборатория базовых знаний. 2000. 376 с.
- Жильников А.А., Жильников Т.А., Жулев В.И. Получение изображения распределения магнитного поля внутри биологических объектов // Биомедицинская радиоэлектроника. 2011. № 7. С. 41-46.
- Клюев В.В. Рентгенотехника. Справочник в 2-х кн. Кн. 2. М.: Машиностроение. 1998. С. 319-326.
- Жильников А.А. Способ неразрушающей объемной регистрации магнитных полей в магнитотерапии // Материалы Всерос. НТК «Биотехнические, медицинские и экологические системы и комплексы БИОМЕДСИСТЕМЫ-2011». Рязань: РГРТУ. 2012. С. 150-152.
- Грузман И.С. Математические задачи компьютерной томографии // Соросовский образовательный журнал. 2001. Т. 7. № 5. 2001. С. 117-121.
- Наттерер Ф. Математические аспекты компьютерной томографии: пер. с англ. М.: Мир. 1990. 288 с.
- Хелгасон С. Преобразование Радона: пер. с англ. М.: Мир. 1983. 152 с.