350 rub
Journal Biomedical Radioelectronics №5 for 2012 г.
Article in number:
Diagnostics of relations between different regions of the brain and muscles of the patients base on mutual relations of nonlinear oscillators
Authors:
N.T. Abdullayev, O.A. Dishin, K.Sh. Ismayilova, Kh.Z. Samedova
Abstract:
Biology and medicine often considers problems of detecting directed relations between elements of complex sys-tems of the considered time series. The problems of detection of directed relations between electroencephalo-graphic signals of brain and electromyographic signals of neuro-muscular system are considered. For this pur-pose, a model of the phase dynamics similar to oscillation phases and calculation of the influence forces of oscil-lators on each other was constructed. The degree of influence of two oscillating systems on each other is as-sessed by means of the analysis of phase dynamics. Application of the model of phase dynamics allows to ex-tend the area of effective application of the method. Phases of the considered narrow-band signals are more ex-posed to changes during the influence on self-oscillatory system that provides high sensitivity of the method to weak relation between signal sources. Normalized index of directivity of the relations is calculated based on the realization ensembles of the modeling system. Results of the work are implemented in the form of a computer program in MATLAB system, allowing to evaluate the relationship between considered regulation contours in the user-friendly way. The obtained estimates are designed to diagnose the state of considered regulatory systems of a man and should be useful in practice in the study of experimental data for the control over the reliability of con-clusions about the directivity of relation.
Pages: 67-72
References
  1. Гехт Б. М., Гундаров В. П., Касаткина Л. Ф. Новые методы клинической электромиографии и актуальные проблемы неврологии. //http://www.mks.ru/library/ text/biomedpribor/96/section2/htm
  2. Nini A., Feingold A., Slovin H., Bergman H. Neurons in the globus pallidusdo not show correlated activityin the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. // J. Neurophysiol. 1995. V. 74.
    № 4. P. 1800 - 1805.
  3. Rivlin-Etzion M., Marmor O., Heimer G., Raz A., Nini A., Bergman H. Basal ganglia oscillations and pathophysiology of movement diorders // Current Opinion in Neurobiology. 2006. V.16. Is. 6. P.629 - 637.
  4. Wang S., Chen Y., Ding M., Feng J., Stein J.F., Aziz T.Z., Liu X. Revealing  the dynamic causal interdependence between  neural and muscular signals in Parkinsonian tremor.  Journal of the Franklin Institue. 2007. V.344. Is. 3-4.P.180 - 195.
  5. Smirnov D.A., Barnikol U.B., Barnikol T.T., Bezruchko B.P., Hauptmann C., Buehrle C., Maarouf M., Sturm V., Freund H.-J., Tass P.A. The generation of Papkinsonian tremor as revealed by directional coupling analysis // Europhysics Letters. 2008, V.83. P. 1 - 6.
  6. Безручко Б. П., Пономаренко В. И., Прохоров М. Д., Смирнов Д. А., Тасс П. А. Моделирование и диагностика взаимодействия нелинейных колебательных систем по хаотическим временным рядам (приложения в нейрофизиологии) // Успехи физических наук. 2008. Т.178. № 3. C. 323 - 329.
  7. Касаткина Л.Ф., Гильванова О.В. Электромиографические методы исследования в диагностике нервно-мышечных заболеваний. Игольчатая электромиография. М.: Медика. 2010. 416 с.
  8. Безручко Б. П., Смирнов Д. А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж». 2005. 320с.
  9. Rosenblum M. G., Pikovsky A. S. Detecting direction of coupling in interacting oscillator // Phys. Rev. E. 2001. V.64. P.R045202.
  10. Пиковский А. С., Розенблюм М. Г., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера. 2003. 496 с.
  11. Gabor D. Theory of communication // J. IEEE. 1946. V.93. P. 429 - 459.
  12. Lachaux J. P., Rodriguez E., Le Van Quyen M. et al.Studying single-trials of phase synchronous activity in the brain. // Int. J. Bif. Chaos. 2000. V. 10. P. 2429 - 2455.
  13. Смоленцев Н. К.Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМК Пресс. 2008. 448с.
  14. Шалфеев В. Д., Матросов В. М. Хаотически модулированные колебания в связанных фазовых системах // Нелинейные волны. 2004. Н. Новгород: ИПФРАН. 2005. С. 77-89.