350 rub
Journal Biomedical Radioelectronics №3 for 2012 г.
Article in number:
Changes in fatty acid composition of thymic cells and blood plasma in normal mice and in mice with systemic inflammation exposed to extremely high-frequency electromagnetic radiation
Authors:
A.B. Gapeyev, T.P. Kulagina, A.V. Aripovsky, N.K. Chemeris
Abstract:
Previously, using a model of acute nonspecific inflammation in mice, it was shown that low-intensity extremely high-frequency electromagnetic radiation (EHF EMR; 42.2 GHz, 0.1 mW/cm2, exposure duration of 20 min) caused a pronounced anti-inflammatory effect, which was manifested as a decrease in the exudative edema and hyperthermia of the inflammation focus. Basing on a pharmacological analysis, we have suggested that the metabolites of fatty acids (FAs) could be involved in the realization of anti-inflammatory effects of EHF EMR. To test this hypothesis, we studied changes in the content of FAs in thymic cells and the blood plasma of mice exposed to EHF EMR in the norm and during inflammation. Peritoneal inflammation in mice was induced by intraperitoneal injection of zymosan. Individual concentrations of FAs in biological samples were determined by a method of gas chromatography. It was found that the single exposure of normal mice to EHF EMR (42.2 GHz, 0.1 mW/cm2, 20 min) caused significant increase in the content of polyunsaturated FAs (dihomo--linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic) and the decrease in the summary content of monounsaturated FAs in thymic cells. On the contrary, quintuple exposure of normal mice to EHF EMR (20 min daily for five consecutive days) led to a decrease in the content of polyunsaturated FAs (linoleic, arachidonic, docosapentaenoic, and docosahexaenoic) and an increase in the content of monounsaturated FAs (palmitoleic and oleic) in thymic cells. Taking into account the fact that the single exposure to EHF EMR induced significant increase in the content of polyunsaturated FAs, which are precursors of many anti-inflammatory mediators, this exposure regimen was chosen for a treatment of mice with the inflammation. The single exposure of mice with zymosan-induced inflammation caused significant increase in the content of polyunsaturated FAs (dihomo--linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic) and the decrease in the summary content of monounsaturated FAs in thymic cells. Changes in the FA composition in the blood plasma were less pronounced and manifested themselves as an increase in the level of saturated FAs during the inflammation. The results obtained are indicative of a capability of EHF EMR to influence significantly a balance between monounsaturated and polyunsaturated FAs in the norm and during inflammation. It is possible that monounsaturated FAs are replaced by polyunsaturated FAs that can enter into the thymic cells from the external media. Taking into account the fact that the metabolites of polyunsaturated FAs are lipid messengers actively involved in inflammatory and immune reactions, we assume that the increase in the content of n-3 and n-6 polyunsaturated FAs in phospholipids of cellular membranes initiated by low-intensity EHF EMR is one of the key elements in the mechanisms of realization of anti-inflammatory effects of the electromagnetic radiation.
Pages: 50-61
References
  1. Rojavin M.A., Ziskin M.C. Medical application of millimetre waves // Q. J. Med. 1998. V. 91. P. 57 - 66.
  2. Pakhomov A.G., Murphy M.R. Low-intensity millimeter waves as a novel therapeutic modality // IEEE Trans. Plasma Sci. 2000. V. 28(1). P. 34 - 40.
  3. Бецкий О.В., Лебедева Н.Н. Применение низкоинтенсивных миллиметровых волн в биологии и медицине // Биомедицинская радиоэлектроника. 2007. № 8 - 9. С. 6 - 25.
  4. Лушников К.В., Гапеев А.Б., Чемерис Н.К. Влияние электромагнитного излучения крайне высоких частот на иммунную систему и системная регуляция гомеостаза // Радиационная биология. Радиоэкология. 2002. Т. 42. № 5. С. 533 - 545.
  5. Гапеев А.Б., Чемерис Н.К. Механизмы биологического действия электромагнитного излучения крайне высоких частот на уровне организма // Биомедицинская радиоэлектроника. 2007. № 8 - 9. С. 30 - 46.
  6. Лушников К.В., Гапеев А.Б., Садовников В.Б., Чемерис Н.К. Влияние крайне высокочастотного электромагнитного излучения низкой интенсивности на показатели гуморального иммунитета здоровых мышей // Биофизика. 2001. Т. 46. Вып. 4. С. 753 - 760.
  7. Лушников К.В., Гапеев А.Б., Шумилина Ю.В. и др. Снижение интенсивности клеточного иммунного ответа и неспецифического воспаления при действии электромагнитного излучения крайне высоких частот // Биофизика. 2003. Т. 48. Вып. 5. С. 918 - 925.
  8. Коломыцева М.П., Гапеев А.Б., Садовников В.Б., Чемерис Н.К. Подавление неспецифической резистентности организма при действии крайне высокочастотного электромагнитного излучения низкой интенсивности // Биофизика. 2002. Т. 47. Вып. 1. С. 71 - 77.
  9. Лушников К.В., Шумилина Ю.В., Якушина В.С. и др. Влияние низкоинтенсивного электромагнитного излучения крайне высоких частот на процессы воспаления // Бюллетень экспериментальной биологии и медицины. 2004. Т. 137. № 4. С. 412 - 415.
  10. Lushnikov K.V., Shumilina J.V., Yakushev E.Yu. et al. Comparative study of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation and diclofenac on footpad edema in mice // Electromagnetic Biology and Medicine. 2005. V. 24(2). P. 143 - 157.
  11. Гапеев А.Б., Лушников К.В., Шумилина Ю.В., Чемерис Н.К. Фармакологический анализ противовоспалительного действия низкоинтенсивного электромагнитного излучения крайне высоких частот // Биофизика. 2006. Т. 51. Вып. 6. С. 1055 - 1068.
  12. Gapeyev A.B., Mikhailik E.N., Chemeris N.K. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence // Bioelectromagnetics. 2008. V. 29(3). P. 197 - 206.
  13. Li Y., Ferrante A., Poulos A., Harvey D.P. Neutrophil oxygen radical generation. Synergistic responses to tumor necrosis factor and mono/polyunsaturated fatty acids // J. Clin. Invest. 1996. V. 97(7). P. 1605 - 1609.
  14. Galli C., Calder P.C. Effects of fat and fatty acid intake on inflammatory and immune responses: a critical review // Ann. Nutr. Metab. 2009. V. 55(1-3). P. 123 - 139.
  15. Гапеев А.Б., Чемерис Н.К. Вопросы дозиметрии при исследовании биологического действия электромагнитного излучения крайне высоких частот // Биомедицинская радиоэлектроника. 2010. № 1. С. 13 - 36.
  16. Gapeyev A.B., Mikhailik E.N., Chemeris N.K. Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation // Bioelectromagnetics. 2009. V. 30(6). P. 454 - 461.
  17. Гапеев А.Б., Соколов П.А., Чемерис Н.К. Исследование поглощения энергии электромагнитного излучения крайне высоких частот в коже крысы с использованием различных дозиметрических методов и подходов // Биофизика. 2002. Т. 47. Вып. 4. С. 759 - 768.
  18. Knapp D.R. Handbook of analytical derivatization reactions. A Wiley-Interscience Publication. New York: John Wiley&Sons Inc. 1979. P. 154, 164 - 167.
  19. Cardwell R.J., Birkhahn R.H., Lee E.M., Thomford N.R. Palmitate and stearate kinetics in the rat during sepsis and trauma // J. Surg. Res. 1991. V. 50(1). P. 51 - 56.
  20. Rapoport S.I., Rao J.S., Igarashi M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver // Prostaglandins Leukot. Essent. Fatty Acids. 2007. V. 77. P. 251 - 261.
  21. Ratnayake W.M., Galli C. Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper // Ann. Nutr. Metab. 2009. V. 55(1 - 3). P. 8 - 43.
  22. Igarashi M., Chang L., Bell J.M., Rapoport S.I. Dietary n-3PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain // J. Lipid Res. 2007. V. 48. P. 2463 - 2470.
  23. Schmitz G., Ecker J. The opposing effects of n-3 and n-6 fatty acids // Prog. Lipid Res. 2008. V. 47(2). P. 147 - 155.
  24. Гапеев А.Б., Швед Д.М., Михайлик Е.Н. и др. Исследование противоопухолевого действия низкоинтенсивного электромагнитного излучения крайне высоких частот на модели солидной карциномы Эрлиха // Биофизика. 2009. Т. 54. Вып. 6. С. 1128 - 1136.
  25. Habermann N., Christian B., Luckas B. et al. Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state // Biofactors. 2009. V. 35(5). P. 460 - 467.
  26. Altenburg J.D., Siddiqui R.A. Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells // Mol. Cancer Res. 2009. V. 7(7). P. 1013 - 1020.
  27. Hamid R., Singh J., Reddy B.S., Cohen L.A. Inhibition by dietary menhaden oil of cyclooxygenase-1 and -2 in N-nitrosomethylurea-induced rat mammary tumors // Int. J. Oncol. 1999. V. 14(3). P. 523 - 528.
  28. Colomer R., Moreno-Nogueira J.M., García-Luna P.P. et al. N-3 fatty acids, cancer and cachexia: a systematic review of the literature // Br. J. Nutr. 2007. V. 97(5). P. 823 - 831.
  29. Siddiqui R.A., Harvey K.A., Zaloga G.P., Stillwell W. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support // Nutr. Clin. Pract. 2007. V. 22(1). P. 74 - 88.
  30. Staiger H., Staiger K., Stefan N. et al. Palmitate induced interleukin-6 expression in human coronary artery endothelial cells // Diabetes. 2004. V. 53(12). P. 3209 - 3216.
  31. Bradley R.L., Fisher F.F., Maratos-Flier E. Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes // Obesity (Silver Spring). 2008. V. 16. P. 938 - 944.
  32. Haversen L., Danielsson K.D., Fogelstrand L., Wiklund O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages // Atherosclerosis. 2009. V. 202. P. 382 - 393.
  33. Wang S., Wu D., Lamon-Fava S. et al. In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation // Brit J. Nutrition. 2009. V. 102. P. 497 - 501.
  34. Kim F., Tysseling K.A., Rice J. et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta // Arterioscler. Thromb. Vasc. Biol. 2005. V. 25(5). P. 989 - 994.
  35. Akamatsu H., Niwa Y., Matsunaga K. Effect of palmitic acid on neutrophil functions in vitro // Int. J. Dermatol. 2001. V. 40(10). P. 640 - 643.
  36. Resh M.D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins // Biochim. Biophys. Acta. 1999. V. 1451(1). P. 1 - 16.
  37. Smotrys J.E., Linder M.E. Palmitoylation of intracellular signaling proteins: regulation and function // Annu. Rev. Biochem. 2004. V. 73. P. 559 - 587.
  38. Shaikh S.R., Mitchell D., Carroll E. et al. Differential effects of a saturated and a monounsaturated fatty acid on MHC class I antigen presentation // Scand. J. Immunol. 2008. V. 68(1). P. 30 - 42.
  39. Jan S., Guillou H., D-Andrea S. et al. Myristic acid increases Δ6-desaturase activity in cultured rat hepatocytes //  Reprod. Nutr. Dev. 2004. V. 44. P. 131 - 140.
  40. Rioux V., Catheline D., Bouriel M., Legrand P. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat // Reprod. Nutr. Dev. 2005. V. 45(5). P. 599 - 612.
  41. Климов А.Н., Никульчева Н.Г. Обмен липидов и липопротеинов и его нарушения. Руководство для врачей. СПб.: Питер Пресс. 1999. С. 281 - 373.
  42. Harbige L.S. Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiallity and the balance between n-6 and n-3 // Lipids. 2003. V. 38(4). P. 323 - 341.
  43. Serhan C.N., Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus // Br. J. Pharmacol. 2008. V. 153(Suppl 1). P. S200 - S215.
  44. Grimm H., Mayer K., Mayser P., Eigenbrodt E. Regulatory potential of n-3 fatty acids in immunological and inflammatory processes // Br. J. Nutr. 2002. V. 87(Suppl 1). P. S59-S67.