350 rub
Journal Biomedical Radioelectronics №3 for 2012 г.
Article in number:
Galvanotaxis of fibroblast cells cultured on carbon nanotubes films
Authors:
I.I. Bobrinetskiy, R.A. Morozov, A.S. Seleznev, R.Ya. Podchernyaeva, G.R. Mikhailova, O.A. Lopatina, I.A. Suetina
Abstract:
The results of human embryonic fibroblasts cell cultured in a pulsed electric field on the coverslips with the conductive films consisting carbon nanotubes and bovine serum albumin composite were presented. Single-walled carbon nanotubes (SWNT) and bovine serum albumin (BSA) composite, was formed under the action of laser radiation. Conductive nanocomposite film on coverslips without and with cell culture were studied using atomic force microscopy and optical microscopy. The galvanotaxis of cells when applying pulse voltages from 10 to 5000 mV was investigated. For the implementation of electrical stimulation in the growth of cells was modified by 6-well plate. As the electrodes were used acupuncture needles Doriva of biocompatible alloy 40KHNM-VI with a gold coating. The experiment used a cell line EPP-T (laboratory tissue cultures FGBU "Research Institute of Virology. Ivanovsky" Health Ministry of Russia), the tissue was obtained from a line of human embryonic fibroblasts (skin and muscle tissue). To assess the proliferative activity of cells on SWNT was used MTT test.Studies have shown that if you directly connect voltage after planting cells are poorly fixed on the surface. Particularly significant was the effect for potentials above 100 mV. In general, the current is increased, there is accumulation of proliferating cells in areas of high film thickness of nanotubes and their characteristic orientation along the electric field lines at voltages above 100 mV (10 nA currents). In small fields of short electric pulses lead to an increase in rate of proliferation of CP by 20%. It remains unclear, the effect of inhibition of cell growth at voltages above 100 mV. For large values of voltage cells begin to come into direct contact with each other and form the structure of the properties close to the tissue. Thus, the electrically conductive substrate was designed based on the SWNT and BSA, and can be used for culturing cells with the electrostimulation and tissue regeneration.
Pages: 41-50
References
  1. Hartig M., Joos U., Wiesmann H.P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro // Eur. Biophys J. 2000. V. 29. № 7. Р. 499  - 506.
  2. Charoo N.A., Rahman Z., Repka M.A., Murthy S.N. Electroporation: an avenue for transdermal drug delivery // Curr. Drug. Deliv. 2010. V. 7. № 2. Р. 125 - 136.
  3. Кубланов В.С., Данилова И.Г., Гетте И.Ф., Брыкина И.А., Шалягин М.А. Пространственно распределённое поле импульсов тока в задаче регенерации ишемизированной мышечной ткани // Биомедицинская радиоэлектроника. 2010. № 10. С. 34 - 39.
  4. Zhao M., Agius-Fernandez A., Forrester J.V., McCaig C.D. Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent // Journal of Cell Science. 1996. V. 109. Р. 1405 - 1414.
  5. Adamis A.P., Meklir B., Joyce N.C. In situ injury-induced release of basic-fibroblast growth factor from corneal epithelial cells // Am. J. Pathol. 1991. V.139. Р. 961 - 967.
  6. Harrison B.S., Atala A. Carbon nanotube applications for tissue engineering // Biomaterials. 2007. V. 28. № 2. Р. 344 - 353.
  7. Ma P.X. Biomimetic materials for tissue engineering // Adv. Drug. Deliv. Rev. 2008. V. 60. № 2. P. 184 - 198.
  8. Dviro T., Timko B.P., Kohane D.S., Langer R. Nanotechnological strategies for engineering complex tissues // Nature Nanotechnology. 2011. V. 6. Issu. 1. Р. 13 - 22.
  9. Ageeva S.A., Bobrinetskii I.I., Nevolin V.K., Podgaetskii V.M., Selishchev S.V., Simunin M.M., Konov V.I., Savranskii V.V. Nanotube-based three-dimensional albumin composite obtained using continuous laser radiation // Semiconductors. 2009. V. 43. № 13.
  10. Yuen F.L-Y., Zak G., Waldman S.D., Docoslis A. Morphology of fibroblasts grown on substrates formed by dielectrophoretically aligned carbon nanotubes // Cytotechnology. 2008. V. 56. № 1. P. 9 - 17.
  11. Bobrinetskii I.I., Morozov R.A., Podgaetskii V.M., Simunin M.M., Yaminskii I.V. A Study of Bulky Nanotube Composites Based on Albumin by High_Resolution Microscopy // Biophysics. 2011. V. 56. № 2. Р. 194 - 199.
  12. Харбиев Р.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Медицина. 2005. 832 с.
  13. Михайлова Г.Р., Мазуркова Н.А., Подчерняева Р.Я. и др. Морфологическая и кариологическая характеристики клеток MDCK и Vero(B) при культивировании в питательных средах на основе растительных гидролизатов // Вопросы вирусологии. 2011. № 2. С. 9 - 14.
  14. Podgaetskii V.M., Selishchev S.V., Bobrinetskii I.I., Nevolin V.K. Volumetric nanodesign by new laser method. Application for medical purposes // Optical Memory & Neural Networks. 2008. V.17. № 2. P. 147 - 151.
  15. Elgrabli D., Abella-Gallart S., Aguerre-Chariol O., Robidel F., Rogerieux F., Boczkowski J., Lacroix G. Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies // Nanotoxicology. 2007. V.1. № 4. P. 266 - 278.
  16. Shen J.-W., Wu T., Wang Q., Kang Y. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces // Biomaterials. 2008. V. 29. № 28. P. 3847 - 3855.
  17. Asuri P., Karajanagi S.S., Yang H., Yim T.J., Kane R.S., Dordick J.S. Increasing Protein Stability through Control of the Nanoscale Environment // Langmuir. 2006. V.22 (13). Р. 5833 - 5836.
  18. Colin D. Mccaig, Ann  M. Rajnicek, Bing Song, Min Zhao. Controlling Cell Behavior Electrically: Current Views and Future Potential // Physiol. Rev. 2005. V.85. Р.943 - 978.
  19. McLaughlin S., Poo M.M. The role of electroosmosis in the electric field-induced movement of charged macromolecules on the surfaces of cells // Biophys. J. 1981. V.34. Р. 85 - 93.
  20. Korbmacher C., Helbig H., Coroneo M., Krisrine A. Membrane Voltage Recordings in a Cell Line Derived From Human Ciliary Muscle Investigative // Ophthalmology & Visual Science. 1990. V. 31. № 11.
  21. Hosoi S., Slayman C.L. Membrane voltage, resistance and cannel switching in isolated mouse fibroblasts (L cells): a patch electrode analysis // Physiol. 1985. № 367. P. 267 - 290.
  22. Cooper M.S., Keller R.E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields // Proc. Nail. Acad. Sci. USA. V. 81. Р. 160 - 164.
  23. Edward K. Onuma and Sek-Wen Hui Electric Field-directed Cell Shape Changes, Displacement, and Cytoskeletal Reorganization Are Calcium Dependent // The Journal of Cell Biology. 1988. V. 106. Р. 2067 - 2075.
  24. Kotnik T., Pucihar G., Miklavcic D. The cell in the electric field. In Kee S.T., Gehl J., Lee E.W. (eds.) Clinical Aspects of Electroporation. New York: Springer Science + Business Media LLC. 2011. Р. 19 - 29.
  25. Cooper M.S., Keller R.E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields // Proc. Nail. Acad. Sci. USA. 1984. V. 81. Р. 160 - 164.
  26. Carol E., Erickson A., Nuccitelli R. Embryonic Fibroblast Motility and Orientation Can Be Influenced by Physiological Electric Fields // The Journal of Cell  Biology. 1984.V. 98. Р. 296 - 307.
  27. Onuma E.K., Hui Sek-Wen. Electric Field-directed Cell Shape Changes, Displacement, and Cytoskeletal Reorganization Are Calcium Dependent // The Journal of Cell Biology. 1988. V. 106. Р. 2067 - 2075.
  28. Kotnik T., Pucihar G., Miklavcic D. The cell in the electric field. In Kee S.T., Gehl J., Lee E.W. (eds.) Clinical Aspects of Electroporation. New York: Springer Science + Business Media LLC. 2011. Р. 19 - 29.