350 rub
Journal Biomedical Radioelectronics №12 for 2012 г.
Article in number:
Biological efficiency of high-energy photons
Authors:
A.V. Belousov, S.M. Varzar, T.V. Gordienko, A.S. Osipov, A.P. Chernyaev, V.I.Petrov
Abstract:
In work the review of high-energy photon radiation relative biological effectiveness researches is resulted. Computer modeling of photon radiation passage through matter is executed and contributions formed, first of all as a results of photonuclear reactions, various particles in the absorbed dose are defined. Values of photon quality factor, averaged on volume and on penetration depth are calculated.
Pages: 46-53
References
  1. Satherberg A., Johansson L.. Photonuclear production in tissue for different 50MV bremsstrahlung beams // Med. Phys. 1998. V. 25. P. 683.
  2. Allen P.D., Chaudhri M.A. The dose contribution due to photonuclear reaction during radioterapy // Med.Phys. 1982. V. 9. P. 904.
  3. Spurny F., Johansson L., Satherberg A., Bednar J., Turek K.The contribution of secondary heavy particles to the absorbed dose from high energy photon beam // Phys. Med. Biol. 1996. V. 41. P. 2643.
  4. Allen P.D., Chaudhri M.A. Energy spectra of secondary neutrons produced by high-energy bremsstrahlung in carbon, nitrogen, oxygen and tissue // Phys. Med. Biol. 1982. V. 27. P. 553.
  5. Allen P.D., Chaudhri M.A. Neutron yields from selected materials irradiated with high energy photons // Phys. Med. Biol. 1991. V. 36. P. 1653.
  6. Allen P.D., Chaudhri M.A. Production of neutrons from water, polyethylene, tissue equivalent material and CR-39 irradiated with 2.5-30 MeV photons // Australas. Phys. Sci. Med. 1991. V. 14. P. 153.
  7. Руководство по мониторингу при ядерных и радиационных авариях. МАГАТЭ. Вена. IAEA. 2002.
  8. ICRU (1993a) Stopping powersand ranges of protons and alpha particles with data disk, ICRU Report 49. International Commission on Radiation Units and Measurement. Bethesda. Maryland. USA.
  9. Zackrisson B., Johansson B., Ostbergh P. Relative biological effectiveness of high energy photons (up to 50 MeV) and electrons (50 MeV). Radiat.Res. 1991. V. 128. P. 192.
  10. Zackrisson B., Karlsson M. Relative biological effectiveness of 50 MeV x rays on jejunal crypt survival in vivo // Radiat. Res. 1992. V. 112. P. 192.
  11. Tilikidis A., Lind B., Nafstadius P., Brahme A. An estimation of the relative biological effectiveness of 50 MeV bremsstrahlung beams by microdosimetric techniques // Phys. Med. Biol. 1996. V. 41. P. 55.
  12. Horsley R.J., Johns H.E., Haslam R.N.H. Energy absorption in human tissue by nuclear processes with high-energy x-rays // Nucleonics. 1953. V. 11. P. 28-31.
  13. Lindborg L. Microdosimetry measurements in beams of high-energy photons and electrons: technique and results. Proc. 5th Symp. on Microdosimetry (Verbania, Italy). New York: Harwood Academic. 1975. P. 347-76.
  14. Laughlin J.S., Reid A., Zeitz. L Ding J. Unwanted neutron contribution to megavoltage x-ray and electron therapy. Proc. Conf. on Neutrons from Electron Medical Accelerators (NBS Special Publication 554) ed H.T. Heaton II and R. Jacobs. 1979. P. 1-14.
  15. Allen P. D., Chaudhri M. A. Photoneutron production in tissue during high energy bremsstrahlung radiotherapy // Phys. Med. Biol. 1988. V. 33. P. 1017-1036.
  16. Ing H., Nelson W. R., Shore R. A. Unwanted photon and neutron radiation resulting from collimated photon beams interacting with the body of radiotherapy patients // Med. Phys. 1982. V. 9. P. 27-33.
  17. Nath R., Epp E. R., Laughlin J. S., Swanson W.P., Bond V.P. Neutrons from high-energy x-ray medical accelerators: an estimate of risk to the radiotherapy patient // Med. Phys. 1984. V. 11. P. 231-41.
  18. Agosteo S., Para A. F., Gerardi F., Silari M., Torresin A., Tosi G. Photoneutron dose in soft tissue phantoms irradiated by 25 MV x-rays // Phys. Med. Biol. 1993. V. 38. P. 1509-1528.
  19. Difilippo F., Papiez L., Moskvin V., Peplow D., DesRosiers C., Johnson J., Timmerman R., Randall M., Lillie R. Contamination dose from photoneutron processes in bodily tissues during therapeutic radiation delivery // Med. Phys. 2003. V. 30. P. 2849-2854.
  20. Gudowska I. Measurements of the neutron absorbed dose from medical electron accelerators // Karolinska Institute Stockholm Department of Radiation Physics Report RI. 1984-04. P. 1-87
  21. Fehrentz D., Hassib G.M., Spyropoulos B.Neutronenverschmutzung in Rontgenstrahlenbdeln von elektronenbeschleunigern // Strahlentherapie. 1983. V. 159. P. 703-712.
  22. Sohrabi M., Morgan K.Z. Neutron dosimetry in high energy x-ray beams of medical accelerators // Phys. Ned. Biol. 1979. V. 24. P. 756-766.
  23. Gudowska I., Brahme A., Andreo P., Gudowski W., KierkeGaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV // Phys. Med. Biol. 1999. V. 44. P. 2099-2115.
  24. Waker A.J. and Maughan R.L. Microdosimetric investigation of a fast neutron radiobiology faculty utilizing the d(4)-9Be reaction // Phys. Med. Biol. 1986. V. 31. P. 1281-90.
  25. Tilikidis A., Brahme A. Lindborg L. Microdosimetry in the build-up region of gamma ray beams // Radiat. Prot. Dosim. 1990. V. 31. P. 227-233.
  26. Tilikidis A., Iacobaeus C. and Brahme A.Microdosimetric measurements in the build-up region of very pure photon and electron beams // Phys. Med. Biol. 1993. V. 38. P. 765-784.
  27. Perris A., Pialoglou P., Katsanos A.A., Sideris E.G. Biological effectiveness of low energy protons. I. Survival of Chinese hamster cell // Int. J. Radiat. Biol. 1986. V. 50. P. 1093-1101.