350 rub
Journal Biomedical Radioelectronics №12 for 2012 г.
Article in number:
Biological efficiency of high-energy photons
Authors:
A.V. Belousov, S.M. Varzar, T.V. Gordienko, A.S. Osipov, A.P. Chernyaev, V.I.Petrov
Abstract:
In work the review of high-energy photon radiation relative biological effectiveness researches is resulted. Computer modeling of photon radiation passage through matter is executed and contributions formed, first of all as a results of photonuclear reactions, various particles in the absorbed dose are defined. Values of photon quality factor, averaged on volume and on penetration depth are calculated.
Pages: 46-53
References
- Satherberg A., Johansson L.. Photonuclear production in tissue for different 50MV bremsstrahlung beams // Med. Phys. 1998. V. 25. P. 683.
- Allen P.D., Chaudhri M.A. The dose contribution due to photonuclear reaction during radioterapy // Med.Phys. 1982. V. 9. P. 904.
- Spurny F., Johansson L., Satherberg A., Bednar J., Turek K.The contribution of secondary heavy particles to the absorbed dose from high energy photon beam // Phys. Med. Biol. 1996. V. 41. P. 2643.
- Allen P.D., Chaudhri M.A. Energy spectra of secondary neutrons produced by high-energy bremsstrahlung in carbon, nitrogen, oxygen and tissue // Phys. Med. Biol. 1982. V. 27. P. 553.
- Allen P.D., Chaudhri M.A. Neutron yields from selected materials irradiated with high energy photons // Phys. Med. Biol. 1991. V. 36. P. 1653.
- Allen P.D., Chaudhri M.A. Production of neutrons from water, polyethylene, tissue equivalent material and CR-39 irradiated with 2.5-30 MeV photons // Australas. Phys. Sci. Med. 1991. V. 14. P. 153.
- Руководство по мониторингу при ядерных и радиационных авариях. МАГАТЭ. Вена. IAEA. 2002.
- ICRU (1993a) Stopping powersand ranges of protons and alpha particles with data disk, ICRU Report 49. International Commission on Radiation Units and Measurement. Bethesda. Maryland. USA.
- Zackrisson B., Johansson B., Ostbergh P. Relative biological effectiveness of high energy photons (up to 50 MeV) and electrons (50 MeV). Radiat.Res. 1991. V. 128. P. 192.
- Zackrisson B., Karlsson M. Relative biological effectiveness of 50 MeV x rays on jejunal crypt survival in vivo // Radiat. Res. 1992. V. 112. P. 192.
- Tilikidis A., Lind B., Nafstadius P., Brahme A. An estimation of the relative biological effectiveness of 50 MeV bremsstrahlung beams by microdosimetric techniques // Phys. Med. Biol. 1996. V. 41. P. 55.
- Horsley R.J., Johns H.E., Haslam R.N.H. Energy absorption in human tissue by nuclear processes with high-energy x-rays // Nucleonics. 1953. V. 11. P. 28-31.
- Lindborg L. Microdosimetry measurements in beams of high-energy photons and electrons: technique and results. Proc. 5th Symp. on Microdosimetry (Verbania, Italy). New York: Harwood Academic. 1975. P. 347-76.
- Laughlin J.S., Reid A., Zeitz. L Ding J. Unwanted neutron contribution to megavoltage x-ray and electron therapy. Proc. Conf. on Neutrons from Electron Medical Accelerators (NBS Special Publication 554) ed H.T. Heaton II and R. Jacobs. 1979. P. 1-14.
- Allen P. D., Chaudhri M. A. Photoneutron production in tissue during high energy bremsstrahlung radiotherapy // Phys. Med. Biol. 1988. V. 33. P. 1017-1036.
- Ing H., Nelson W. R., Shore R. A. Unwanted photon and neutron radiation resulting from collimated photon beams interacting with the body of radiotherapy patients // Med. Phys. 1982. V. 9. P. 27-33.
- Nath R., Epp E. R., Laughlin J. S., Swanson W.P., Bond V.P. Neutrons from high-energy x-ray medical accelerators: an estimate of risk to the radiotherapy patient // Med. Phys. 1984. V. 11. P. 231-41.
- Agosteo S., Para A. F., Gerardi F., Silari M., Torresin A., Tosi G. Photoneutron dose in soft tissue phantoms irradiated by 25 MV x-rays // Phys. Med. Biol. 1993. V. 38. P. 1509-1528.
- Difilippo F., Papiez L., Moskvin V., Peplow D., DesRosiers C., Johnson J., Timmerman R., Randall M., Lillie R. Contamination dose from photoneutron processes in bodily tissues during therapeutic radiation delivery // Med. Phys. 2003. V. 30. P. 2849-2854.
- Gudowska I. Measurements of the neutron absorbed dose from medical electron accelerators // Karolinska Institute Stockholm Department of Radiation Physics Report RI. 1984-04. P. 1-87
- Fehrentz D., Hassib G.M., Spyropoulos B.Neutronenverschmutzung in Rontgenstrahlenbdeln von elektronenbeschleunigern // Strahlentherapie. 1983. V. 159. P. 703-712.
- Sohrabi M., Morgan K.Z. Neutron dosimetry in high energy x-ray beams of medical accelerators // Phys. Ned. Biol. 1979. V. 24. P. 756-766.
- Gudowska I., Brahme A., Andreo P., Gudowski W., KierkeGaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV // Phys. Med. Biol. 1999. V. 44. P. 2099-2115.
- Waker A.J. and Maughan R.L. Microdosimetric investigation of a fast neutron radiobiology faculty utilizing the d(4)-9Be reaction // Phys. Med. Biol. 1986. V. 31. P. 1281-90.
- Tilikidis A., Brahme A. Lindborg L. Microdosimetry in the build-up region of gamma ray beams // Radiat. Prot. Dosim. 1990. V. 31. P. 227-233.
- Tilikidis A., Iacobaeus C. and Brahme A.Microdosimetric measurements in the build-up region of very pure photon and electron beams // Phys. Med. Biol. 1993. V. 38. P. 765-784.
- Perris A., Pialoglou P., Katsanos A.A., Sideris E.G. Biological effectiveness of low energy protons. I. Survival of Chinese hamster cell // Int. J. Radiat. Biol. 1986. V. 50. P. 1093-1101.