350 rub
Journal Biomedical Radioelectronics №10 for 2012 г.
Article in number:
The mechanism of rheogepatogram-s signal formation
Authors:
A.V. Kobelev, S.I. Shchukin, E. Matevossian, A. Schneider, K.F. Stock
Abstract:
The aim of this study is an experimental research on laboratory animals to determine the mechanisms of liver-s electrical impedance, also known as rheogepatogram. Electrical impedance was recorded directly from the liver, which abdomen animal is under general anesthesia was opened. Signals were recorded at four different cardiorespiratory states. In case of the breath-hold the pulse flow oscillations give the main contribution to the electrical impedance changes. In case of breathing the impedance signals are due to pulse fluctuations in blood flow and also reflect changes in respiratory venous liver. Consideration of the breathing in the development of liver-s control systems based on impedance techniques will differentiate the contribution of arterial and venous blood flow, which gives additional diagnostic information about the liver-s state.
Pages: 12-17
References
  1. Bolondi L., Li Bassi S., Gaiani S. et al. Liver cirrhosis: changes of doppler waveform of hepatic veins // Radiology. 1991. V. 178. P. 513-516.
  2. Stanley P. Budd-Chiari syndrome // Radiology. 1989. V. 173. P. 578-581.
  3. Meire H.B. The role of ultrasound in liver transplantation. EFSUMB post-graduate course in vascular Doppler. Chapter 13. Bologna: Timeo. 1999. P. 57-62.
  4. Hubscher S. Diagnosis and grading of liver allograft rejection: a european perspective // Transplant Proc. 1996. V. 28 (1). P. 504.
  5. Rabinovici N., Navot N. The relationship between respiration, pressure and flow distribution in the vena cava and portal hepatic veins // Surg. Gynecol. 1980. V. 151. P. 753 - 763.
  6. Митьков В.В., Черешнева Ю.Н., Федотов И.Г. и др. Влияние дыхания, физической и пищевой нагрузки на характер кровотока в воротной и печёночных венах // Ультразвуковая диагностика. 2000. № 3. С. 78 - 83.
  7. Raaijmakers E., Faes TH.J.C, Schoten R.J.P.M., Goovaerts H.G. and Heethaar R.M. A meta-analysis of published studies concerning the validity of transthoracic impedance cardiography // Annals of the New York Academy of Sciences. 1999. V. 873. April 20.
  8. Зубенко В.Г., Морозов А.А., Сергеев И.К., Щукин С.И. Определение минутного объема кровообращения на основе модифицированного соотношения Кубичека // Биомедицинские технологии и радиоэлектроника. 2002. № 9. С. 11 - 30.
  9. Shchukin S.I, Kobelev A.V., Medvedev O.S. Rheocardiography method and ways to increase its accuracy of hemodynamic parameters estimation / World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, IFMBE Proceedings 25/IV. P. 813 ff.
  10. Pat. №5,685,316 (USA). Non-Invasive monitoring of hemodynamic parameters using impedance cardiography / S. Schookin, V. Zubenko, K. Beliaev, A. Morozov, Wen H. Young.
  11. Pat. №6,161,038 (USA). Non-Invasive
    monitoring of hemodynamic parameters using impedance cardiography / S. Schookin, V. Zubenko, K. Beliaev, A. Morozov, Wen H. Young
    .
  12. Sherlock-s Diseases of the Liver and Biliary System / Ed. by James S. Dooley, Anna S. F. Lok, Andrew K. Burroughs, E. Jenny Heathcote. 12th ed. Wiley-Blackwell. 2011.
  13. Bolondi L., Gandolfi L., Arienti V. et al. Ultrasonography in the diagnosis of portal hypertension: diminished response of portal vessels to respiration // Radiology. 1982. V. 142. P. 167-172.
  14. Zurbrugg H.R., De P., Bachmann S., Liebold A., Behr R., Philipp A., Birnbaum D.E., Neuhaus P. Continous blood flow measurement after liver transplantation: first clinical experience // Transplant Proc. 1994. V. 26 (4). P. 2218.
  15. Harms J, Schneider A, Baumgartner M, Henke  J, Busch R. Diagnosing acute liver graft rejection: experimental application of an implantable telemetric impedance device in native and transplanted porcine livers // Biosensors & Bioelectronics. 2001. № 16. P. 169-177.