350 rub
Journal Biomedical Radioelectronics №9 for 2011 г.
Article in number:
Magnetic Iron Oxide Nanoparticles as Magnetic Resonance Contrast Media and Fluorescent Agents
Authors:
A.G. Akodjanov, A.V. Babich, I.V. Bykov, V.Yu. Naumenko, A.I. Segeev, N.L. Shimanovskii, G.Yu.Yurkov
Abstract:
Superparamagnetic iron oxide nanoparticles with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation, etc. All these biomedical and bioengineering applications require that these nanoparticles have high magnetization values and size 10 nm with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic particles, which has to be not only non-toxic and biocompatible. Application of iron oxide nanoparticles with superparamagnetic and fluorescent properties allows to combine methods of magnetic resonance and fluorescent visualization for diagnostic tumors. Estimation values of re-laxation times Т1 and Т2 of colloid solituions in different concentration of particles are 120?20 ms and 14?1 ms respectively. It has been observed the improvement of small vessels visualization in brain of rats after intravenous injec-tion of 0,1 ml of solution contained 5,1 mg of ferrous. After injection of iron nanoparticles the tumor in rats became better contrasting and delineated by use T1, weighted and Т2 weighted sequences. Moreover iron nanoparticles demarcate possibility to give contrast en-hancement of blood vessels. It has been found the fluorescent properties of these iron nanoparticels in the field of wave 554 nm after ir-radiation of light with UV light by use lumiscent microscope EC LUMAM-RPО11. This article discusses the synthetic chemistry of superparamagnetic iron oxide nanoparticles, as well as their use for biomedical applications.
Pages: 28-36
References
  1. Safarik I., Safarikova M.Magnetic techniques for isolation and purification of proteins and peptides. Biomagn //Res. Techol. 2004. V. 2(1). P. 709.
  2. Wilson M.W., Kerlan R.K., Fidelman N.A., Wenook A.P., LaBerge L.M., Coda J., Gordon R.L. Hepatocellular carcinoma: regional therapy with magnetic targered carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite - initial experience with four patients // Radiology. 2004. V. 230. P. 287-293.
  3. Suzuki M., Shinkai M., Honda H., Hobayashi T. Anticancer effect of immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes // Melanoma Res. 2003. V. 13(2). P. 129-135.
  4. Safarik I., Safarikova M.Magnetic nanoparticles and biosciences // Monatshefte fur chem. 2002. V. 133. P.737-759.
  5. HalbreichA., RogerJ., PonsL.N., GeldwerthD., DaSilvaM.F, RoudierM., Barkri J.C. Biomedical applications of magnemite ferrofluids // Biochimie. 1998. V. 80. № 5-6. P. 379-390.
  6. Abraham J.L., Thakral C., Skov L. et al. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis // Br. J. Dermatol. 2008. V. 158. P. 273-280.
  7. Broome D.R., Girguis M.S., Baron P.W., et al.Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned // Am. J. Roentgenol. 2007. V. 188. P. 586-592.
  8.  Sieber M.A., Pietsch H., Walter J. et al.Preclinical Study to Investigate the Development of Nephrogenic Systemic Fibrosis: A Possible Role for Gadolinium-Based Contrast Media // Invest Radiol. 2008. V. 43. P. 65-75.
  9.  Шимановский Н.Л., Науменко В.Ю., Акопджанов А.Г., Панов В.О Семейкин А.В., Сергеев А.И. Применение суперпарамагнитных наночастиц сложного оксида железа для МРТ контроля биологических сред // Нанотехника. 2009. №4 (20). C. 64-70.
  10.  Schnorr J., et al. Comparisonof the iron oxide-based blood-pool contrast mediumVSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiographyofthe aorta and renal arteries in pigs // Investigative Radiology. 2004. V.39. № 9.
  11.  Hilger I., Fruhauf K., et al.Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad // Radiol. 2002. V.9. P. 198-202.
  12.  Meldrum C., Kotov N. A., Feodler J.H.Preparation of Particulate Mono- and Multilayers from Surfactant-Stabilized, Nanosized Magnetite Cristallites // American Chemical Society. 1994. V. 98. P. 4506-4510.
  13.  Vogl T.J., Hammerstingl R., Schwarz W. et. al.(Superparamagnetic iron oxide-enhanced versus gadolinium-enhan­ced MR imaging for differential diagnosis of local liver lesions. Radiology. 1996. V. 198. P. 881-887.
  14. Taylor P.M., Hawnaur J.M., Hutchinson C.E. Superparamagnetic iron oxide imaging of focal liver disease // Clin. Radiol. 1995. V. 50. Р. 215-219.
  15.  Alivisatos P. The use of nanocrystals in biological detection // Nat. Biotechnol. 2004. V. 22. P. 47-52.
  16. Yu W.W., Qu L.H., Guo W.Z., Peng X.G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals // Chem. Mater. 2003. V. 15.P. 2854-2860.
  17. Gao X.H., Yang L.L., Petros J.A., et al. In vivo cancer targeting and imaging with semiconductor quantum dots // Nat. Biotechnol. 2004. V. 22. P. 969-976.
  18.  Hu F., Ran Y., Zhou Z., Gao M.Preparation of bioconjugates of CdTe nanocrystals for cancer marcer detection // Nanotechnology. 2006. V. 17. Р. 2972-2977.
  19.  Nie S., Xing Y., Kim G.J., Simons J.W. Nanotechnology applications in cancer // Ann. Rev. Biomed. Eng. 2007. V. 9. P. 12.1-12.32.
  20. Kim S.W., Zimmer J.P., Ohnishi S., et.al. Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dote for the near-infrared // J. Am. Chem. Soc. 2005. V. 127. P. 10526-10532.
  21. Prinzen L., Miserus R.-J., Dirksen A., et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots // Nano Letters. 2007. V. 7. P. 93-100.
  22. Gao X.Multifunctional quantum dots for cellular and molecular imaging // Proc. 29-th Annual Int. Conf. IEEE EMBS. Lyon, France. 2007. August 23-28. ThC13. V. 3. P. 524-525.
  23. Арзуманова Н.В., Стуков Л.А., Тютин Л.А. Динамическая контрастная магнитно-резонансная томография в диагностике заболеваний молочных желез // Медицинская визуализация. 1999. № 2. C. 2-6.
  24.  Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов: Уч. Пособие. М.: ИКЦ «Академкнига». 2006. С. 309.