350 rub
Journal Biomedical Radioelectronics №4 for 2011 г.
Article in number:
Analysis of Electromagnetic and Thermal Fields of Interstitial Microwave Applicator
Authors:
V.V. Komarov, I.I. Novruzov
Abstract:
Such minimally invasive therapy as microwave ablation is an attractive alternative to the existing surgery proce-dures of tumor treatment. Along with contact-type waveguide applicators and reentrant cavity resonators numer-ous interstitial microwave antennas are widely utilized nowadays in medicine practice. Ablation therapy is based on local heating of tumor up to temperatures 50÷90ºC by means of coaxial radiator inserted into the human body. Most of such devices are designed in the form of dipole antenna which generates high power density domain around applicator. Tow modifications of monopole type coaxial antenna design with cone shaped dielectric or metal tip are consi-dered in present study. Coupled electromagnetic bioheat conduction mathematical model is formulated for simulation microwave heating processes in tumor. Given coupled problem is solved using 2D axial-symmetrical finite element method. The same 2D model is employed also for optimization of return loss in interstitial applicator under study. One more 3D numerical algorithm on finite difference time domain method is used for verification of simulation data. Both approaches have demonstrated good agreement near operating frequency 2.45 GHz. Obtained results show that distributions of temperature fields in the interaction zone depend on material of antenna tip. This peculiarity can be used for treatment of various sized and shaped tumors.
Pages: 57-62
References
  1. Давидович М.В. Нагрев биологических тканей аппликатором типа открытый конец волновода // Биомедицинские технологии и радиоэлектроника. 2007. № 1. C. 51 - 55.
  2. Ishihara Y., Gotanda Y., Naoki W., Matsuda J. Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors // Review of Scientific Instruments. 2007. V.78. 024301. P. 1 - 8.
  3. Rhattoy A., Bri S., Audhuy-Peudecedery M. Coaxial antenna for microwave hyperthermia // Journal of Electromagnetic Waves and Applications. 2005. V. 19. № 14. P. 1963 - 1971.  
  4. Макаров В.Н., Ющенко Г.В. Сравнительный анализ микроволнового и радиочастотного нагрева при тепловой абляции опухолей // Биомедицинские технологии и радиоэлектроника. 2009. № 2. С. 3 - 10.
  5.  Cavagnaro M., Amabile C., Bernardi P. Design and realization of a new type of interstitial antenna for ablation therapies // Proceedings of the 39thEuropean Microwave Conference. 2009. Rome. Italy. P. 878 - 881.
  6. Hardie D., Sangster A.J., Cronin N.J. Coupled field analysis of heat flow in the near field of a microwave applicator for tumor ablation // Electromagnetic Biology and Medicine. 2006. V. 25. P. 29 - 43.
  7. Kikuchi S., Saito K., Takahashi M., Ito K. Control of heating pattern for interstitial microwave hyperthermia by a coaxial-dipole antenna - aiming at treatment of brain tumor // Electronics and Communications in Japan. 2007. Part1. V. 90. № 1. P. 1486 - 1492.
  8. Хиппель А.Р.Диэлектрики и их применение. М.: Госэнергоиздат. 1959.
  9. Jerby E., Aktushev O., Dikhtyar V. Theoretical analysis of the microwave-drill near-field localized heating effect // Journal of Applied Physics. 2005. V. 97. 034909.
  10. Марков Г.Т., Петров Б.М., Грудинская Г.П. Электродинамика и распространение радиоволн. М.: Сов. радио. 1969.
  11. Комаров В.В. Исследование процессов СВЧ-нагрева диссипативных сред с учетом конвективного теплообмена: теория и эксперимент // Прикладная физика. 2006.№ 4.  С. 34 - 41.
  12. Pething R. Dielectric properties of biological materials: biophysical and medical applications // IEEE Trans on Electrical Insulation.1984. V. 19. №  5. P. 453 - 474.
  13. Gwarek W.K., Celuch-Marcysiak M. Wide-band S-parameter extraction from FDTD simulations for propagating and evanescent modes in inhomogeneous guides // IEEE Transactions on Microwave Theory and Techniques. 2003. V. MTT-51.  № 8. P. 1920 - 1928.