350 rub
Journal Biomedical Radioelectronics №2 for 2011 г.
Article in number:
Bicarbonate Aqueous Solutions Activated with Hydrogen Peroxide are Long-Term Sources of Low Level Photon Emission ensitive to Weak and Ultraweak Factors
Authors:
Do Minh Ha, O.G. Mukhitova, N.D. Vilenskaya, S.I. Malishenko, V.L. Voeikov
Abstract:
Addition of hydrogen peroxide (0,005-0,01%) to bicarbonate aqueous solutions (1-5 mM) initiates red/ox processes in them accompanied with generation of energy of electronic excitation. In the presence of chemiluminescence enhancer luminol, they emit photons that, and retain this property for many months in tightly closed test tubes or sealed glass ampoules more than a year even if they are kept in complete darkness. Injection of hydrogen peroxide into phosphate or borate buffers or into distilled water with the same pH values as bicarbonate solutions also initiates luminol-dependent photon emission from them but unlike bicarbonate solutions this emission completely fades within several hours or days. Circadian rhythms of oscillations are observed that partially correlate with ambient temperature variations. An effect of cosmo-physical factors on photon emission intensity was also observed. In particular during the full Lunar eclipse in Moscow, photon emission intensity from bicarbonate solution that was activated with hydrogen peroxide more then 2 months before the event increased 2-3-fold and returned to the level preceding the eclipse only 2 days after the eclipse beginning. Hydrated fullerenes C60 that are known to possess high biological activity in low and ultra-low doses significantly affected photon emission intensity of active bicarbonate solutions. Dose-response relationships for the action of hydrated fullerenes was paradoxical. Hydrated fullerenes significantly intensified photon emission and stabilized it against fading in concentration ranges of 10-12-10-15 and 10-19-10-20 M while intermediate concentrations either did not influence or even attenuated photon emission from the solutions. Structure-energetic state of aqueous milieu of bicarbonate solutions is discussed in the relation to the extremely long-term auto-generation of high density energy in them. We speculate that hydrogen peroxide initiates looped chain reactions in bicarbonate solutions in which all the participants of the process - carbonates, water, and hydrogen peroxide serve at different stages of the process as substrates, catalysts, and the products able to regenerate back into substrates. Bicarbonate solutions in which cyclic chain reactions with are initiated gain low density energy from their environment and transform it into high density energy thet is partially released in the form of photons. Thus they behave as a step-up transformers and being in a permanent non-equilibrium start non-equilibrium state they possess high sensitivity to the action of low intensity factors.
Pages: 28-38
References
  1. Henderson Y.Adventures in Respiration. Modes of Asphyxiation and Methods of Resuscitation. Baltimore: Williams& Wilkins. 1938.
  2. Гулый М.Ф. Фиксация СО2у микроорганизмов и других гетеротрофных организмов и ее физиологическое значение // Изв. АН СССР. Сер. Б. 1971. № 5. С. 724-729
  3. Коган А.Х., Грачев С.В., Елисеева С.В.Модулирующая роль СО2 в действии активных форм кислорода. М.: ГЭ-ОТАР-Медиа. 2006. 256 с.
  4. Medinas D.B., Cerchiaro G., Trindade D.F., Augusto O. The carbonate radical and related oxidants derivered from bicarbonate buffer. Critical review // IUBMP Life. 2007. V. 59. P. 255-262.
  5. Liochev S.I., Fridovich I. Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase // Free Radic. Biol. Med. 2010. V. 48. P. 1565-1569.
  6. Voeikov V., Asfaramov R., Koldunov V. et al. Chemiluminescent analysis reveals spontaneous oxygen-dependent accumulation of high density energy in natural waters // Clin. Lab. 2003. V. 49. P. 569.
  7. Воейков В.Л. Ключевая роль устойчиво неравновесного состояния водных систем в биоэнергетике. // Российский химический журнал. (ЖурналРХОим. Д.И. Менделеева). 2009. Т. LIII. № 6. С. 41-49.
  8. Andrievsky G.V., Klochkov V.K., Bordyuh A., Dovbeshko G.I. Comparative analysis of two aqueous-colloidal solutions of c60 fullerene with help of FT-IR reflectance and UV-VIS spectroscopy // Chem. Phys. Letters. 2002. V. 364. P. 8-17.
  9. Andrievsky G.V., Kosevich M.V., Vovk O.M. et al. On the production of an aqueous colloidalsolutionoffullerenes//J.Chem.Soc. Chem. Commun. 1995. V. 12.P. 1281-1282.
  10. Tikhomirov A. A., Nedzvetskii V. S., Lipka M. V., et al. Chronic alcoholization-induced damage to astroglia and intensification of lipid peroxidation in the rat brain: Protector effect of hydrated form of fullerene С60 // Neurophysiology. 2007. V. 39. №2. P. 105-111.
  11. Andrievsky G., Shakhnin D., Tronza A. et al.The acceleration of blood plasma clot lysis in the presence of hydrated C60 fullerene nanostructures in super-small concentration // Fullerenes, Nanotubes, and Carbon Nanostructures. 2010. V. 18.P. 303-311.
  12. Voeikov V.L., Do Ming Ha, Vilenskaya N.D. et al. Effects of hydrated fullerenes in sub-nanomolar concentrations upon redox reactions in aqueous systems and on enzyme activity/ XII International Congress on Bioelectrography. July 5-7 2008. St. Peterburg. Congress Proceedings. P. 95-96.
  13. Davenas E., Bauvais F., Amara J. et al.Human basophil degranulation triggered by very diluted antiserum against Ig E // Nature. 1988. V. 333. P. 267-272.
  14. Maltseva E.L., Palmina N.P., Burlakova E.B.Natural (alpha-tocopherol) and synthetic (phenosan potassium salt) antioxidants regulate the protein kinase C activity in a broad concentration range (10(-4)-10(-20) M) // Membr. Cell Biol. 1998. V. 12. P. 251-268.
  15. Belon P., Cumps J., Ennis M. et al.Histamine dilutions modulate basophil activation // Inflamm Res. 2004. V. 53. P. 181-188.
  16. Merenui G., Lind J.S. Role of peroxide intermediate in the chemiluminescence of Luminol. A mechanistic study // J. Am. Chem. Soc. 1980. V. 102. P. 5830-5835.
  17. Voeikov V. Reactive Oxygen Species, Water, Photons, and Life // Rivista di Biologia/Biology Forum. 2001. V. 94. P. 193-214.
  18. Владимиров Ю. А., Проскурнина Е. В. Свободные радикалы и клеточная хемилюминесценция // Успехи биологической химии. 2009. Т. 49. С. 341-388.
  19. Рид Д. Возбужденные электронные состояния в химии и биологии. М: Изд-во иностр. литературы. 1960. С. 165-170.
  20. Feng N, Lu J, He Y, Du J Post-chemiluminescence behaviors of Ni2+, Mg2+, Cd2+, and Zn2+ in potassium ferricyanide-luminol reaction // Luminescence 2005. V. 20. P. 266-270.
  21. Li B., Deng Q., Guo L., Zhang Z. Secondary chemiluminescence emission of the luminol-ferricyanide system induced by reducing agents // Microchim Acta. 2008. V. 162. P.189-198
  22. Huang, C. K. T. Wikfeldtb, T. Tokushimac et al.The inhomogeneous structure of water at am­bient conditions //Proc. Nat. Acad. Sci.2009. V. 106. P. 15214-15218.
  23. Lo S. Y., Geng X., Gann D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure // Physics Letters A. 2009. V. 373. P. 3872-3876.
  24. Arani R., Bono I., Del Giudice E., Preparata G. QED Coherence and the Thermodynamics of water // Int. J. Modern Phys. B. 1995. V. 9. P. 1813-1841.
  25. Del Giudice E, Tedeschi A. Water and the autocatalysis in living matter // Electromagnetic Biology and Medicine. 2009. V. 28. P. 46-54.
  26. Zheng J.M., Chin W.C., Khijniak E., et al. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact //Adv. Colloid Interface Sci. 2006. V. 127. P. 19-27.
  27. Ovchinnikova K., Pollack G. H. Can Water Store Charge - // Langmuir.2009. V. 25.P. 542-547.
  28. Voeikov V.L. Biological oxidation: over a century of hardship for the concept of active oxygen // Cell. Mol. Biol. (Noisy-le-grand). 2005. V. 51. P. 663-675.
  29. Voeikov V.L., Del Giudice E. Water Respiration - The Basis
    of the Living State. WATER; A Multidisciplinary Research Journal. 1993. V.1. P. 52 - 75. URL: http://waterjournal.org/content/view/45/64/
  30. Pauling L. A molecular theory of general anesthesia // Science. 1961. V. 134.P. 15-21.
  31. Halmann M. M. Chemical fixation of carbon dioxide. CRCPress. 1993. P.11-15.
  32. Комиссаров Г.Г. Фотосинтез: физико-химический подход. М.: УРСС. 2003. С. 154-170.
  33. TanakaT.Molecularorbitalstudiesofthetwo-electronreductionofcarbondioxidetogiveformateanion//MemoriesFukuiUniv. Technol. 1993. V. 23. Pt.1. Р. 223-230.
  34. Voeikov V.L., Naletov V.I.Weak photon emission of non-linear chemical reactions of amino acids and sugars in aqueous solutions. In: «Biophotons». Jiin-Ju Chang, Joachim Fisch, Fritz-Albert Popp. Dortrecht: Kluwer Academic Publishers. 1998. P. 93-108.
  35. Richardson D.E., Yao H., Frank K.M., Bennett D.A.Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: oxidation of sulfides by peroxymonocarbonate // J. Am. Chem. Soc. 2000. V. 122.P. 1729-1739.
  36. Xu X., Muller R.P., Goddard W.A., 3rd. The gas phase reaction of singlet dioxygen with water: a water-catalyzed mechanism // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 3376-3381.
  37. Chai B., Yoo H., Pollack G.H. Effect of radiant energy on near-surface water // J. Phys. Chem. B. 2009. V. 113. P. 13953-13958.
  38. Andrievsky G.V., Klochkov V.K., Derevyanchenko L.I. Is C60 fullerene molecule toxic?! // Fullerenes, Nanotubes and Carbon Nanostructures // 2005. V. 13. P. 363-376.
  39. MiescherF.BemerkungenzurLehrevondenAthembewegungen// Arch.Anat.Physiol. PhysiolAbth. 1885. P. 3555-3561.