350 rub
Journal Biomedical Radioelectronics №12 for 2011 г.
Article in number:
Possible Applications of Nanoscale Iron Oxide Particles for Treating Tumors by Hyperthermia
Keywords:
hyperthermia
superparamagnetic nanoparticles
magnetic resonance tomography
magnetic-resonance contrast media
Authors:
V.U. Naumenko, A.G. Akopdzhanov, A.V. Babich, I.V. Bykov, N.L. Shimanovskiy
Abstract:
A brief review of the application of superparamagnetic iron oxide nanoparticles application for treatment of tumors by hyperthermia is presented. Practical use of solutions of nanoparticles is associated with their stabilization, which is achieved by the application of organic and inorganic coating on the surface of the nanoparticles, as well as the use of surfactants. Ways to improve the stability of colloidal solutions, containing superparamagnetic nanoparticles, and magnetic contrast agents, based on such solutions are considered. А number of drugs based on superparamagnetic iron oxide nanoparticles, as well as the ways of targeted delivery of drugs in local body areas, are described. The article also specifies problems, that have to be solved to apply hyperthermia in practice, the main one being - is the local temperature rise of tissue above the normal temperature 37,5 ° C, since the process of heating the tumor in the body depends strongly on the homogeneity of the tissue, on the distribution of nanoparticles in it and blood perfusion of the tumor. It is necessary to consider the cooling effect of blood flow during hyperthermia because the level of tissue heating depends on the blood flow rate. It should be stressed that hyperthermia, probably, increases immune response of organism, taking into account that heat shock proteins mask tumor antigens, but the removal of this effect by hyperthermia could be the mechanism that was responsible for the increase of antitumor immunity. The prospect of application of colloidal solutions based on magnetic nanoparticles of iron oxide is shown by possibility of creation drugs that can be used as contrast agents for magnetic resonance imaging of blood vessels and organs. Particular attention is paid to the development of techniques to remove tumors and treatment of cancer patients using an electromagnetic thermotherapy.
Pages: 19-27
References
- Шимановский Н.Л., Епинетов М.А., Мельников М.Я. Молекулярная и нанофармакология. М.: Наука. 2010. 624 с.
- Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю.Магнитные наночастицы: методы получения, строение и свойства // Успехи химии. 2005. № 74(6). С. 539-574.
- Белов К.Л. Электронные процессы в магнетите // Успехи физических наук. 1993. Т. 163. № 5. С. 53-66.
- Шимановский Н.Л., Науменко В.Ю., Акопджанов А.Г. и др. Применение суперпарамагнитных наночастиц сложного оксида железа для магнитно-резонансного контрастирования биологических сред // Нанотехника. 2009. № 4 (20). С. 64-70.
- Гусев А.И., Рампель А.А. Нанокристаллические материалы. М. Физматгиз. 2000. С. 224.
- Broun W.F. Thermal fluctuation of a single-domain patrickle // Phys. Rev. 1963. V. 130. P. 1677-1686.
- Granov A.M., Muratov O.V., Frolov V.F. Problems in the local hyperthermia of inductively heated emboli zed tissues // Theor. Foundation Chem. Eng. 2002. V. 36. P. 71-74.
- Craciun V., Calugaru G., Badescu V. Accelerated simulation of heat transfer in magnetic fluid hyperthermia // Czechoslovak. J. Phys. 2002. V. 52. P. 725-728.
- Berry C., Curtis A. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. D. Appl. Phys. 2003. V. P. 36.
- Lu A.-H., Salabas E.L., Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angew. Chem. Int. Ed. 2007. V. 46. P. 1222-1244.
- Koneracka M., Kopcansky P., Antalik M. et al. Immobilization of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 1999. V. 201. P. 427.
- Bruce I.J., Sen T. Surface Modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations // Langmuir. 2005. V. 21. P. 7029-7035.
- Tomasovicova N., Koneracka M., Kopcansky P. et al. Infrared study of biocompatible magnetic nanoparticles // Measurement Science Review. 2006. V. 6. № 3. P. 32-35.
- Berry C., Curtis F. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. 2003. V. 15. P. 198-206.
- TaupitzM., WagnerS., SchnorrJ. et al.Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging // Investigative Radiology. 2004. V. 39. P. 394-405.
- Kin Man Ho, Pei Li. Design and Synthesis of Novel Magnetic Core- Shell Polymeric Particles // American Chemical Society. 2008. V. 24(5). P. 1801-1807.
- Ito A., Shinicai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles // J. of bioscience and bioengineering. 2005. V. 100. P. 1-11.
- Schnorr J. et al. Comparisonof the Iron Oxide-Based Blood-Pool Contrast MediumVSOP-C184With Gadopentetate Dimeglumine for First-Pass Magnetic Resonance Angiographyofthe Aortaand Renal Arteriesin Pigs // Investigative Radiology. 2004. V. 39. № 9.P. 546-553.
- Gupta A. Q. et al. Resent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. //Nanomedicine. 2007.V. 2 (1). P. 2-23.
- Li X., Du X., Huo T., Liu X., Zhang S., Yuan F. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner // Acta Radiol. 2009. V. 50(6). P. 583-94.
- Pang S.C., Chin S.F., Anderson M.A. Redox Equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of the pH and redox potential // J. Colloid and Interface Sci. 2007. V. 311. P. 94-101.
- Corot C., Robert P., Idee J.M. et al. Recent advances in iron oxide nanocrystal technology for medical imaging // Adv. Drug. Deliv. Rev. 2006. V. 58. P. 1471-504.
- Михайлов Г.А., Васильева О.С. Технология будущего: использование магнитных наночастиц в онкологии // Бюллетень СО РАН. 2008. № 3 (131). С. 18-22.
- Le B. et al. Preparation of tumor specific magnetoliposomes and their application for hyperthermia // J. Chem. Eng. Jpn. 2001. V. 34. P. 66-72.
- Le B. et al. Targeting hyperthermia for renal cell carcinoma using human MN antigenspecific magnetoliposomes //Jap. J. Cancer. 2001. V. 92. P. 1138-1145.
- Lee J. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging // Nature Medcine. 2007. V. 13(1). P. 95-99.
- Lacroix L.-M., Ho. D., SunS.Magnetic Nanoparticles
as Both Imaging Probes and Therapeutic Agents // Current Topics in Medicinal Chemistry. 2010. V. 10. P. 1184-1197. - KrishnanK.M. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy // EEE Trans. Magn. 2010. V. 46(7). P. 2523-2558.
- Johannsen M. Gneveckow U. Thiesen B. et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperaturedistribution // Eur. Urol. 2007. V. 52. P. 1653-1662.
- Neilsen O.S., Horsman M., Overgaard J. A future hyperthermia in cancer treatment // E. J. Cancer. 2001. V. 37. P. 1587-1589.
- Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticiles in biomedicines. // J. Phys. D. Appl. Phys. 2003. V. 36. P. 167-181.
- Rapoport N. et al. Multifunctional nanoparticles for combining ultrasonic tumor imaging und targeted chemotherapy // J. Natl. Cancer. Inst. 2007. V. 99. P. 1095-1106.
- Oleson J.R., Heusinfeld R.S., Manning M.R. Hyperthermia by magnetic induction: II Clinical experience with concentric electrodes Usable frequencies in hyperthermia with thermal seeds // Int. J. Radial. Oncol. Phys. 1983. V. 9. P. 549-556.
- Atrinson W.J., Brezovich I.A., Chakraborty D.P. Usable frequencies in hyperthermia with thermal seeds // IEEE Trans. Biomed. Eng. 1984. V. BME 31. P. 70-75.
- Harton B.V., Takano Y.S., Winterforde C.M., Gobe G.C. The role of apoptosis in the response of cells and tumors to mild hyperthermia // Int. J. Radiat. Biol. 1991. V. 59. P. 489-501.
- Fairbairn J.J., Khan M.W., Ward K.J. et al. Induction of apoptotic cell DNA fragmentation in human cells after treatment with hyperthermia // Cancer Letters. 1995. V. 89. P. 183-188.
- Burgman P., Nussenzweig A., Li G.C. Thermotolerance // Thermoradiotherapy and Thermo-chemoterapy. Biology, Physiology, Physics / M.H. Seegenscmidt, P. Fessenden, C.C.Vernon (Eds). Berlin: Springer. 1995. V. 1. P. 75-87.
- Multhoff G., Botzler C., Wiesnet M. et. al. A stress induciblt 72-kDa heat shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells // Int. J. Cancer. 1995. V. 61. P. 272-279.
- Fortin-Ripoche J.P. et al.Magnetic Targeting of magnetoliposomes to Solid Tumors with MR imaging monitoring in Mice: Feasibility // Radiology. 2006. V. 239. P. 415-24.
- Kumar D., Narayan J., Sharma A.V., Sankar J. J. // Magn. Magn. Mater. 2001. V. 232. P. 161.
- Neuwelt E.A., Hamilton B.E., Varallyay C.G., Roo-
ney W.R., Edelman R.D., Jacobs P.M., Watnick S.G. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF) // Kidney International. 2009. V. 75. P. 465-474. - Инструкция (информация для специалистов) по медицинскому применению лекарственного препарата Резовист. ПроизводительSchering AG Germany. D-13342. Berlin. Mullerstrasse 178. 2003.
- Weissleder R., Elizondo G., Wittenberg J., et al. Ultrasmall superpara-magnetic iron oxide: characterization of a new class of contrast agents for MR imaging // Radiology. 1990. V. 75. P. 489-93.
- Jordan A. et al. Scientific and clinical applications of magnetic carriers. New York: Plenum Press. 1997. P. 569.
- Lu A.H., Salabas E.L., Schuth F. Magnetic nanoparticles: synthesis, protection, fictionalization, and application // Angew. Chem. Int. Ed. 2007. V. 46. P. 1222-1244.
- Hilger I., Fruhauf K. et al. Heating potential of iron oxides for therapeutic purposes in interventional radiology // Acad. Radiol. 2002.V. 9. P. 198-202.