350 rub
Journal Biomedical Radioelectronics №9 for 2010 г.
Article in number:
Mathematical Simulation of the Self Radiation of Human Tissue in the Microwave Frequency Range
Authors:
S.G. Vesnin, M.K. Sedankin
Abstract:
Mathematical simulation of the self radiation of human tissue in the microwave frequency range is based on the numerical 3D solution of the bio-heat equation and Maxwell's equations for a multilayer structure. The bio-heat equation was solved for the breast tissue with a malignant tumor. The model of the breast is con-sisted of several layers, glandular tissue, fat tissue, skin and malignant tumor. Each component of the model was characterized by its metabolic heat production, blood perfusion rate and thermal conductivity. The calculations were performed using COMSOL software. The resulting temperature distribution was used for calculation the brightness temperature on the projection of a malignant tumor. CST Microwave Studio was used to calculate the electromagnetic field in tumor and surrounding tissues of the breast. This software allows us to solve 3D electro-magnetic equations for a multilayer structure and take into account the actual construction of the receiving antenna. The calculation shows that the high sensitivity of microwave radiometry in the detection of malignant tumors is based not only on the fact that the tumor has higher temperature in comparison with the temperature of surrounding tissues, but because of high conductivity of malignant tumor. This is due to the fact that the self- radiation of the tumor in the microwave frequency range depends not only on the temperature of the tumor, but also it depends on the conductivity of the tumor. Theoretical investigation of the depth measurements of microwave radiometer in different frequency ranges was held. The calculations were performed in two frequency bands using three antennas. Two antennas were analyzed in the frequency range of 1.15 GHz - the antenna based on the circular waveguide and a miniature printed antenna. The noise protected antenna was analyzed in the range of 3.8 GHz. The volume under investigation for different microwave antennas was held. The new definition of «measuring depth» was proposed. It is the depth of the area in which 85% power of the receiving antenna is concentrated. The traditional definition of measurement depth, as the distance at which the field decreases in the «e» time cannot be used for real antennas in a multilayer tissue. The mathematical simulation shows that the measurement depth depends not only on the frequency range, parameters of the tissues and aperture of the antenna, but it depends also on the construction of the antenna.
Pages: 33-44
References
  1. Barrett A.H., Myers Ph. C.Subcutaneous Temperature: A method of Noninvasive Sensing // Science. 1975. V.190. P.669 -671.
  2. Gautherie M. Temperature and Blood Flow Patterns in Breast Cancer During Natural Evolution and Following Radiotherapy // Biomedical Thermology. 1982. P.21 -64.
  3. Gautherie M., and Gros C. M.Breast Thermography and Cancer // Cancer. 1980. V. 45. P. 51 - 56.
  4. ТроицкийВ.С.Ктеорииконтактныхрадиометрическихизмеренийвнутреннейтемпературытел//Изв.вузов. Сер. Радиофизика.1981.Т. 24.№ 9.С.1054.
  5. Рахлин В.Л., Алова С.Е. Радиотермометрия в диагностике патологии молочных желез, гениталий, предстательной железы и позвоночника // Препринт № 253. Горький: НИРФИ. 1988.
  6. Годик Э.Э., Гуляев Ю.В. Человек глазами радиофизики // Радиотехника. 1991. №. 8. С. 51
  7. Сельский А.Г., Фишер А.М., Дубынина В.П., Гуляев Ю.В., Богдасаров Ю.Б., Зайцева Т.Ю., Ленская О.П., Платонов С.А., Плющев В.А., Хитров М.Л., Ширяев С.В., Шурыгин О.Ю.,Щербаков М.И. Возможности применения динамического термокартирования в радио- и инфракрасном диапазоне в онкологической клинике // Радиотехника. 1995. № 9. С. 85 -89.
  8. Carr K.L. Microwave Radiometry: it-s Importance to the Detection of Cancer // IEEE MTT. 1989. V. 37. № 12.
  9. Cheever E. A., Foster K.R.Microwave Radiometry in Living Tissue: What Does it Measure - // IEEE Trans. Biomed. Engineering. 1992. V. 39. P. 563 -867.
  10. Hand J. W., Leeuwen G.M. J. Van, Mizushina S., Van de Kamer J.B., Maruyama K., Sugiura T., Azzopardi D.V., Edwards A.D. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling // Phys Med. Biol. 2001. V. 46. № 7. P. 1885 -1900.
  11. Bardati F, Iudicello S.Modeling the Visibility of Breast Malignancy by a Microwave Radiometer // IEEE Trans. Biomed. Engineering. 2008. V. 55. № 1. P. 214 ? 221.
  12. Jacobsen S, Stauffer P.Multi-frequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus // IEEE Transactions on Microwave Theory and Techniques. 2002. V. 50. P. 1737-1746.
  13. Lee J.W., Kim K.-S., Lee S.M., Eom S.J., and Troitsky R.V.
    A Novel Design of Thermal Anomaly for Mammary Gland Tumor Phantom for Microwave Radiometer // IEEE Trans. Biomed. Engineering. 2002. V. 49. P. 694 -699.
  14. Leroy Y., Bocquet B., Mammouni A. Non-invasive microwave radiometry thermometry // Physiol. Means. 1998. V. 19. P. 127-148.
  15. Mustata L., Baltag O.Applications of Microwave Radiometry in Diagnostic Suspicion of Mammary Pathology IFMBE Proceedings. 2008. V. 22. P. 825 - 828.
  16. Вайсблат А.В. Медицинский радиотермометр РТМ-01-РЭС // Биомедицинские технологии и радиоэлектроника. 2001. № 8. С. 3 - 9.
  17. Патент № 2306 099 С2 (РФ) / «Антенна-аппликатор для неинвазивного измерения температуры внутренних тканей биологического объекта». С.Г. Веснин.
  18. Vesnin S.G., Gorbach A.M.Non-invasive Monitoring of Body Internal Temperature Using a Passive Microwave Radiometer. Physiology and pharmacology of Temperature Regulation, Phoenix, Arizona, USA. 2006.
  19. Веснин С.Г., Каплан М.А., Авакян Р.С.Современная микроволновая радиотермометрия молочных желез. Маммология/Онкогинекология. 2008. № 3.
  20. Рожкова Н.И., Смирнова Н.А., Назаров А.А.Радиотермометрия молочной железы и факторы, влияющие на ее эффективность // Маммология. 2007. №3. С. 21 - 25.
  21. Бурдина Л.М., Вайсблат А.В., Веснин С.Г., Конкин М.А., Лащенков А.В., Наумкина Н.Г., Тихомирова Н.Н. Применение радиотермометрии для диагностики рака молочной железы // Маммология. 1998. №2. С. 3 - 12.
  22. Бурдина Л.М., Пинхосевич Е.Г., Хайленко В.А. , Бурдина И.И., Веснин С.Г., Тихомирова Н.Н. Радиотермометрия в алгоритме комплексного обследования молочных желез // Современная онкология. 2005. Т. 6. №1. С. 8 -9.
  23. Gonz´alez F.J. Thermal simulation of breast tumors // Rev.Mex.F´ıs.2007. V. 53. № 4.P. 323-326.
  24. Ng E.Y.-K., Sudharsan N.M. An improved 3-D direct numerical modeling and thermal analysis of a female breast with tumor // International Journal of Engineering in Medicine, Proc.Instn Mech Engrs. 2001. V. 215. PartH. P. 25 - 37.
  25. Харченко В.П., Рожкова Н.И. «Национальное руководство по маммологии», Ассоциация медицинских обществ по качеству. М.: «ГЕОТАР-Медиа».2007. 328 с.