350 rub
Journal Biomedical Radioelectronics №6 for 2010 г.
Article in number:
Principle of the System Organization of Experiment for Dynamics Researches of Functional Systems in Biology and Medicine
Authors:
Yu.P. Mukha, L.G. Aculov, V.U. Naumov
Abstract:
As is known, biological and medical functionality of the system (FUS) should be considered dynamic. In accordance with this definition, any FUS is a converter of the space of physiological parameters that determine the metabolism of all tissues, in themselves, that is owned by the intervals of the same parameters in order to maintain stasis system, a given set of results, some afferent synthesis with higher center of neural control (NC). Since the stasis at the level of the human body as a whole is determined by the dynamic stasis of the whole family of functional physiological systems, the organization of the experiment to study the dynamics of functional systems is extremely important. Research practice in biology and medicine often precludes real, operational time parameter of the directly observable parameters of the experiment. One possible solution to the problem is to use the concept of dynamic pairs known in mathematical systems theory. Using this representation of the functional systems allows us to formulate the following structure of dynamic organization of research: 1) establishment of a hierarchical structure of the system (FUS, for example); 2) determination of the dynamic pair system and each of its subsystems; 3) determination of the system and each of its subsystems; 4) establishment of a dynamic interaction between the relevant actors (FUS, for example); 5) introduction of time moments and the establishment of quasi-order on the set of states. Realization of the structure of the organization system of the experiment to establish a dynamic relationship be-tween some physiological functional systems can assign the technology system of measurement: select a family of measurable physiological parameters, determined by the specification of test equipment that comprise the information measurement system. Finally, the synthesized algorithmic support processing and error estimates for the experimental results.
Pages: 43-52
References
  1. Муха Ю.П. Структурный синтез ИС/НС (фрактально/категорный подход) // Биомедицинские технологии и радиоэлектроника. 2003. № 4. С. 31 - 41.
  2. Бусленко Н.П., Калашников В.В., Коваленко И.Н. Лекции по теории сложных систем. М.: Сов. радио. 1973. 440 с.
  3. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина. 1975. 448 с.
  4. Месарович М., Такахара Я. Общая теория систем: математические основы. М.: Мир. 1978. 311 с.
  5. Судаков К.В. и др. Нормальная физиология: Курс физиологии функциональных систем / под ред. К.В. Судакова. М.: Медицинское информационное агентство. 1999. 718 с.
  6. Муха Ю.П., Скворцов М.Г. Системные функции и нейросетевые системы для измерения основных физиологических параметров  // Биомедицинские технологии и радиоэлектроника. 2002. № 2. С. 58 - 61.
  7. Гудвин Б.Временная организация клетки. Динамическая теория внутриклеточных регуляторных процессов. М.: Мир. 1966. 251 с.
  8. Муха Ю.П. Структурный синтез системной функции ИС/НС для сложной измерительной ситуации на медицинском объекте // Биомедицинские технологии и радиотехника. 2006. № 4. С. 26 - 32.
  9. Букур И., Дияну А. Введение в теорию категорий и функторов. М.: Мир. 1972. 259 с.