350 rub
Journal Biomedical Radioelectronics №5 for 2010 г.
Article in number:
Role of Microconvection in thin Interfacial Layers of Liquids in Mechanisms of Biological Effects of Non-Thermal Intensities Millimeter Waves
Authors:
E.E. Khizhnyak, E.P. Khizhnyak, O.V. Betsky, Yu.g. Yaremenko, A.S. Kozmin
Abstract:
Heating is considered as one of the main non-controversial primary mechanisms of biological effects of millimeter wave radiation, and water is the primary target responsible for the absorption of microwave energy. Temperature gradients which occur due to rapid absorption of millimeter waves become sufficient to create convective stream-ing in water-containing media. The temperature gradient which corresponds to the threshold of free convection (1 ºC per 6.7 km) can be exceeded after a few seconds of millimeter wave exposure at incident power densities of 106 W/cm2. It is quite difficult to observe micro-convection streams in pure water at such low levels of microwave exposure, but it-s much easier to record such types of convection in ethanol-water solutions because temperature gradients disturb the concentration equilibrium of ethanol-water solutions. Experimental studies of micro-convection processes in thin interfacial layers of 10% ethanol-water solutions ex-posed to non-thermal intensity millimeter wave radiation were performed using the method of high resolution real-time infrared thermography. Modification of micro-convection patterns was observed at 106 W/cm2 levels of mm-wave exposure together with 0.2-0.3 ºC temperature fluctuations caused by ethanol concentration gradients leading to an exothermal reaction due to ethanol diffusion in water. Under such conditions millimeter waves play the role of a trigger factor that determines the localization of the ris-ing convective stream.
Pages: 34-38
References
  1. Бецкий О.В.  Миллиметровые волны в биологии и медицине // Радиотехника и электроника. 1993. Т. 38. № 10.С. 1760 - 1782.
  2. Бецкий О.В., Кислов В.В., Девятков Н.Д.  Миллиметровые волны низкой интенсивности в медицине и биологии // Биомедицинская радиоэлектроника. 1998. № 4.
    С. 13 - 29.
  3. Бецкий О.В.Вода и электромагнитные волны // Биомедицинская радиоэлектроника. 1998. № 2.С. 3 - 6.
  4. Девятков Н.Д., Голант М.Б., Бецкий О.В. Миллиметровые волны и их роль в процессах жизнедеятельности. М.: Радио и связь. 1991.С. 168.
  5. Иваницкий Г.Р., Деев А.А., Хижняк Е.П. Структуры на поверхности воды, наблюдаемые с помощью инфракрасной техники // Успехи физических наук. 2005. Т. 175. № 11.С. 1207 - 1216.
  6. Ландау Л.Д. Лифшиц Е.М. Гидродинамика. М.: Наука. 1988.
  7. Furia L., Hill D.W. and Gandhi O.P. Effect of millimeter-wave irradiation on growth of Saccharamyces cerevisiae. // IEEE Trans. Biomed. Eng. 1986. V. BME-33. N. 11.
    P. 993 - 999.
  8. Grundler W., Keilmann F.  Nonthermal effects of millimeter microwave on yeast grows // Z. Naturforsh. 1978. V. 15. P. 33.
  9. Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of electromagnetic interaction with cellular systems // Naturwissenschaften. 1992. V. 79. P. 551 - 559.
  10. Grundler W., Keilmann F. and Frohlich H. Resonant growth rate response of yeast cell irradiatrd by weak microwaves // Physical Review Lett. 1977. V. 62A. P. 463 - 466.
  11. Grundler W., Keilmann F., Putterlik V., Santo L., Strube D. and  Zimmerman I. Nonthermal resonant effect of 42 GHz microwaves on the growth of yeast cultures // Coherent Excitations in Biological Systems / eds. H. Frolich,
    F. Kremer.
    Berlin: Springer-Verlag. 1983, P. 21 - 37.
  12. Keilmann F., Grundler W. Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves // Physical Review Lett. 1983. V. 51. N. 13. P. 1214 - 1216.
  13. Khizhnyak E.P., Ziskin M.С. Heating patterns in bioligical tissue phantoms caused by milimeter wave electromagnetic irradiation // IEEE Trans. Biomed. End. 1994. V. 41. N. 9. P.865 - 873.
  14. Khizhnyak E.P., Ziskin M.C. Temperature Oscillation in Liquid Media Caused by Continuous (Nonmodulated) Millimeter Wavelength Electromagnetic Irradiation // Bioelectromagnetics. 1996. V. 17. P. 223 - 229