350 rub
Journal Biomedical Radioelectronics №4 for 2010 г.
Article in number:
Features of Signal Transmission and Sources of Signal Losses in Spectral Devices for Biomedical Analyses
Authors:
V.V. Shapovalov, B.S. Gurevich, I.A. Kolesov, A.V. Belyaev, S.V. Andreev
Abstract:
The schematic design of an optical spectrum analyzer intended with programmable light source for biomedical analyses performance is considered. Proceeding from the need of a maximum amount of information processing at a minimum time interval, the device schematic design is analyzed from the point of view of information transmission through the device, and the analysis of signal and noise transmission through the device links is performed. The concept of optical freedom degrees is considered in application to the device to be analyzed. The connection between the number of optical freedom degrees and the amount of the transmitted information, has been demonstrated. It has been shown that the most significant distinctive feature in this concept application to a spectral device is the need in introducing of the concept of spectral optical freedom degrees. The number of spectral freedom degrees allows to find the number of spectral intervals in which the light intensity can be varied independently on light intensity in the other intervals. Due to the device consideration as a consequence of links in which the information is transformed by means of different physical phenomena, it has been shown that acousto-optic tunable filter plays a key part in the device. It has been also found that the decisive part in determination of the amount of transmitted information can play the spectral resolving power of the acousto-optic tunable filter. The method of acousto-optic tunable filter spectral resolving power measurement has been proposed and experimentally tested. The studied filter description as well as the experimental installation schematic design are given, and the obtained experimental results are discussed. It is shown that using the proposed method, it is possible to take into consideration both necessary amount of gray scale levels to be transmitted and the probability of the information unit non-distinguishing while the resolving power definition.
Pages: 32-38
References
  1. Патент № 2287736 (РФ). Универсальный источник полихромного оптического излучения/ С.В.Андреев и др.
  2. Гуревич С.Б., Гуревич Б.С., Жумалиев К.М. Проблемы информационной оптоэлектроники. СПб.: Наука. 2008. 207 с.
  3. Gurevich B. et al. Real time illuminating light wavelength control for biochemical spectral devices // Proc. of Topical Meeting on Optoinformatics-2008. Sept. 15-18. 2008. St.Petersburg. P. 163 - 166.
  4. Шеннон К.Математическая теория связи / В кн.: Работы по теории информации и кибернетике. М.: ИЛ. 1963. С. 243.
  5. Von Laue M. The variability of ray beams // Ann. Phys. 1914. V. 44. P. 1197 - 1212.
  6. Gabor D. Light and information // Progress in Optics. E.Wolf Ed. V. 1. North-Holland. Amsterdam. 1961.
  7. Toraldo di Francia G. Resolving power and information // Journ. OSA. 1955. V. 45, N. 7. P. 497-501.
  8. Toraldo di Francia G. Degrees of freedom of an image // Journ. OSA. 1969. V. 59, N. 7. P. 799-804.
  9. Slepian D., Pollak H.O.  Prolate spheroidal wave functions. Fourier Analysis and Uncertainty I // TheBell System
    Technical Journal. 1961. V. 40. P.43 - 46. 
  10. Лоуэн А.Сфероидальные волновые функции / В .кн.: Справочник по специальным функциям / под ред. М. Абрамовица, И. Стиган. М.: Наука. 1979. 832 с .
  11. Хонина С.Н. Приближение сфероидальных волновых функций конечными рядами // Компьютерная оптика. 1999. Bып.19. C. 65 - 70.
  12. Гуревич Б.С. Информационные процессы и методы информационных измерений в оптических устройствах обработки и хранения данных / Дисс. на соискание ученой степени докт. техн. наук. С.-Петербург: Ин-т аналитического приборостроения РАН. 2005.
  13. Sokolov V.N, et al. A transmission function of a generalized acousto-optical device // Proceedings of SPIE. 1997. V. 3238. P. 38 - 45.
  14. Шаповалов В.В. и др. Источник света с произвольно регулируемым спектральным составом для биомедицинских спектральных анализаторов // Биомедицинская радиоэлектроника. 2009. № 11. С. 16 - 20.
  15. Gurevich B.S., et al. Acousto-optic tunable filter wavelength selectivity measurement method // Proceedings of SPIE. 2005. V. 5828. P. 60-67.