350 rub
Journal Biomedical Radioelectronics №11 for 2010 г.
Article in number:
The Comparative Analysis of Proteins Primary Structure from Pathogenic and non Pathogenic Bacteria by Return Interval Statistics
Keywords:
signal structure
statistical analysis
pathogenic bacteria
pathogenic factors
interval statistics
Authors:
M. I. Bogachev, A. R. Kayumov
Abstract:
The paper discusses the applicability of a novel method recently introduced by the authors to analyze the primary structure of proteins based on the statistics of return intervals between single amino acids to specify the differences between pathogenic and non-pathogenic bacteria. Recent investigations strongly indicate that the primary structure of proteins exhibits long-range dependence and multifractal properties. However, the origin of these structural properties, due to the general complexity of proteins structure and the integrative character of the fluctuation analysis methods that have been applied to extract multifractal features, remain unknown. Based on our recent findings concerning the statistics of return intervals in multifractal data sets, that are distributed considerably broader than a simple exponential that is a well-known result for random location, we suggest a method to elucidate the main components (amino acids) that contribute to the long-range dependent and multifractal primary structure of proteins. We have shown that in most of the bacterial proteins only a few amino acids are characterized by a broad distribution of return intervals that is a clear manefistation of long-range dependence. We demonstrate that the main components contributing to the long-range structural dependencies in proteins vary significantly among different protein functional classes. We also show that the studied properties differ in pathogenic and non-pathogenic bacteria. We hope that the suggested approach can be used to identify specific properties of pathogenic factors and thus to gain a better understanding of pathogenic mechanisms in bacteria and their relations to proteins structure.
Pages: 4-9
References
- Kayumov A., Heinrich A., Sharipova M., Iljinskaya O., Forchhammer K. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis // Microbiology. 2008. V.154. P.2348 - 2355.
- Peng C.-K., Buldyrev S. V., Havlin S. et al. Mosaic organization of DNA nucleotides // Phys. Rev. E. 1994. V. 49. P. 1685-1689.
- Rosas A., Nogueira E. J., Fontanari J. F. Multifractal analysis of DNA walks and trails // Phys. Rev. E. 2002. V.66. P. 061906(1-6).
- Yu Z.-G., Ahn V., Lau K.-S. Multifractal and correlation analyses of protein sequences from complete genomes // Phys. Rev. E. 2003. V. 68. P. 021913 (1-10).
- Yu Z.-G., Ahn V., Lau K.-S. Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses // J. of theoretical biology. 2004. V. 226. P. 341-348.
- Yang J.-Y., Yu Z.-G., Ahn V. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids // Chaos, Solitons and Fractals. 2009. V. 40. P. 607 - 620.
- Богачев М. И., Каюмов А. Р., Михайлова Е. О. Анализ структуры сигналов и функциональной организации биокаталитических систем с использованием математического аппарата интервальных статистик // Изв. вузов России. Сер. Радиоэлектроника. 2010. Вып. 3. С. 8-16.
- Bogachev M. I., Eichner J. F., Bunde A. Effect of nonlinear correlations on the statistics of return intervals in multifractal data sets // Phys. Rev. Lett. 2007. V. 99. P. 240601(1-4).
- Bogachev M. I., Eichner J. F., Bunde A. The effect of multifractality on the statistics of return intervals // Eur. Phys. J. Spec. topics. 2008. V. 181. P. 181-193.
- Bogachev M. I., Bunde A. On the occurrence and predictability of overloads in telecommunication networks // Europhys. Lett. 2009. V. 86. P. 66002(1-6).
- Bogachev M. I., Kireenkov I. S., Nifontov E. M., Bunde A. Statistics of return intervals between long heartbeat intervals and their usability for online prediction of disorders // New J. Phys. 2009. V. 11. P. 063036 (1-18).
- Богачев М. И. К вопросу о прогнозируемости выбросов динамических рядов с фрактальными свойствами при использовании информации о линейной и нелинейной составляющих долговременной зависимости // Изв. вузов России. Сер. Радиоэлектроника. 2009.
Вып. 5. С. 31-40. - Богачев М. И. Сравнительный анализ помехоустойчивости методов прогнозирования выбросов случайных сигналов с фрактальными свойствами при использовании информации о кратковременной и долговременной зависимостях // Изв. вузов России. Сер. Радиоэлектроника. 2010. Вып. 1. С. 11-21.