350 rub
Journal Biomedical Radioelectronics №1 for 2010 г.
Article in number:
Dosimetry Questions at Studying Biological Effects of Extremely High-Frequency Electromagnetic Radiation
Authors:
A.B. Gapeyev, N.K. Chemeris
Abstract:
The review considers some questions of dosimetry which solution is necessary at studying the mechanisms of biological effects of extremely high-frequency electromagnetic radiation. The purpose of dosimetry is the establishment of relationship between parameters of external electromagnetic fields influencing a biological object and parameters of the fields penetrating into or arising in the exposed system which lead to primary biological effects. In spite of the large number of works in the field of electromagnetic biology and therapy, the correct dosimetric supply is rather an exception than a rule. This results in both irreproducibility and inaccurate interpretation of experimental results. On the basis of our own results and literature data, the dosimetry methodology is demonstrated at choosing a radiating system, providing the matching of a radiator with feeding tract and irradiated biological object, measuring the radiation pattern of an antenna, determining an incident power density, measuring a distribution of the specific absorption rate in irradiated object, assessing a degree of heterogeneity of the specific absorption rate, dependence on radiation frequency and geometry of irradiated object. Results of testing of various types of antennae show the following. First, at an exposure of biological objects in the near field zone of horn antennae, there is complex multiple-mode interference pattern of an electromagnetic field distribution in an object plane that can lead to artefacts at studying an effect dependence on the frequency and power. Second, dielectric antennae, as a rule, have the poor matching with feeding tract; the value and character of dependence of a standing wave ratio on frequency are determined by both a configuration of the antenna and a distance to irradiated object. Therefore, irradiating the object by means of the dielectric antenna, it is necessary to have accurate notion about the specific absorption rate, its spatial distribution and dependence on radiation frequency. An antenna of a special form developed by us, the channel radiator, is free from the limitations inherent to horn and dielectric antennae that allows to use it effectively for biomedical studies. The channel radiator provides a good directivity, uniformity of electromagnetic field in an object plane, and a good matching with feeding tract that allows carrying out an exposure of biological objects with the help of the channel radiator in both the near and far field zones. Examples of experimental, theoretical and numerical methods of determination of electromagnetic energy absorption are submitted for in vitro and in vivo irradiation of biological systems. Specific absorption rate in the skin of laboratory animals was determined on the basis of both microthermometric measurements of initial rates of temperature rise in the skin induced by exposure and microcalorimetric measurements of specific heat of the skin. Theoretical calculations of SAR in the skin were performed taking into account dielectric parameters of the skin obtained from standing wave ratio measurements at reflection of electromagnetic waves from the skin surface, and considering effective area of stationary overheating measured by a method of infrared thermography. The numerical method was developed to determine electromagnetic energy reflected, absorbed and transmitted in the model of flat layers. An algorithm of the method was realized in computer program and used to calculate SAR in the skin on the basis of complex dielectric constant of skin. The SAR values obtained from experimental measurements, theoretical calculations and numerical analysis are in good mutual correspondence. The results can be used for dosimetric supply of biomedical experiments on studying physicochemical mechanisms of biological effects of extremely high-frequency electromagnetic radiation. In spite of complexity at implementation of dosimetry in a range of extremely-high frequencies, the knowledge of its features and methods of measurement and an assessment of the physical values characterizing electric, magnetic and electromagnetic fields should become the mandatory requirement. Without the solution of dosimetry problems, the investigation into the mechanisms of biological effects of electromagnetic radiation becomes incorrect. It is necessary to determine and specify all parameters of the electromagnetic field and exposure conditions, since change of the majority of them can cardinally modify re-sponse of a biological system. Inconsistent or incomplete dosimetric supply and absence of necessary controls imply an occurrence of artefacts, difficulties for the analysis of experimental results and undervaluation of even the most interesting and important effect of electromagnetic radiation.
Pages: 13-36
References
  1. European Prestandard ENV 50166:1995. Human exposure to electromagnetic fields: two parts: ENV 50166-1: Low frequencies (0 to 10 kHz); ENV 50166-2: High frequencies (10 kHz to 300 GHz). CENELEC.Brussel. 1995.
  2. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Std C95.1-2005. TheInstituteofElectricalandElectronicsEngineers. NewYork. 2006.
  3. Санитарно-эпидемиологические правила и нормативы. Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов. СанПиН 2.1.8/2.2.4.1383-03. М.: Минздрав России. 2003.
  4. Санитарно-эпидемиологические правила и нормативы. Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи. СанПиН 2.1.8/2.2.4.1190-03. М.: МинздравРоссии. 2003.
  5. International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields // Health Physics. 1998. V. 74(4). P. 494-522.
  6. D'Andrea J.A., Ziriax J.M., Adair E.R. Radio frequency electromagnetic fields: mild hyperthermia and safety standards // Prog. Brain. Res. 2007. V. 162. P. 107 - 135.
  7. Roy C.R. Rapporteur Report: ICNIRP international workshop on EMF dosimetry and biophysical aspects relevant to setting exposure guidelines // Health Phys. 2007. V. 92(6). P. 658-667.
  8. Grandolfo M. Worldwide standards on exposure to electromagnetic fields: an overview // Environmentalist. 2009. V. 29. P. 100-117.
  9. Гапеев А.Б., Чемерис Н.К. Некоторые вопросы дозиметрии в исследовании биологических эффектов электромагнитного излучения крайне высоких частот. / Материалы 19-й Междунар. Крымской конф. «СВЧ-тех­ника и телекоммуникационные технологии», г. Севастополь, Крым, Украина. Севастополь: Вебер. 2009. С. 877-879.
  10. Бецкий О.В., Девятков Н.Д., Лебедева Н.Н. Лечение электромагнитными полями. Часть 1. Источники и свойства электромагнитных волн // Биомедицинская радиоэлектроника. 2000. № 7. С. 3-9.
  11. Беляков Е.В.Высокодобротный резонанс в волноводе с сильно поглощающим диэлектриком // Электронная техника. Сер. 1. Электроника СВЧ. 1987. Вып. 7(401). С. 51-53.
  12. Харланов А.В. Влияние электромагнитных волн на протекание жидкости через капилляр. / Материалы 19-й Междунар. Крымской конф. «СВЧ-техника и телекоммуникационные технологии», г. Севастополь, Крым, Украина. Севастополь: Вебер. 2009. С. 897-898.
  13. Бецкий О.В., Петров И.Ю., Тяжелов В.В. и др. Распределение электромагнитных полей миллиметрового диапазона в модельных и биологических тканях при облучении в ближней зоне излучателей // ДАН СССР. 1989. Т. 309. № 1. С. 230-233.
  14. KhizhnyakE.P., Ziskin M.C. Heating pattern sinbiological tissue phantoms caused by millimeter wave electromagnetic irradiation // IEEE Trans. Biomed. Eng. 1994. V. 41(9). P. 865-873.
  15. Полников И.Г., Путвинский А.В. Акустическое детектирование поглощения электромагнитного излучения миллиметрового диапазона в биологических объектах // Биофизика. 1988. Т. 32. Вып. 5. С. 893-895.
  16. Баланцев В.Н., Лебедев А.М., Пермяков В.А. и др. Численное исследование распределения удельной поглощаемой мощности на двумерных моделях рупорных антенн с биологическими объектами. / Сб. докл. Междунар. симп. «Миллиметровые волны нетепловой интенсивности в медицине». М.: ИРЭ АН СССР. 1991. Ч. 3. С. 660 - 664.
  17. Корбанский И.Н.Антенны. М.: Энергия. 1973. 336 с.
  18. Гапеев А.Б., Чемерис Н.К. Действие непрерывного и модулированного ЭМИ КВЧ на клетки животных. Обзор. Часть II. Проблемы и методы дозиметрии ЭМИ КВЧ // Вестник новых медицинских технологий. 1999. Т. VI. № 2. С. 39-45.
  19. Кузнецов А.Н. Биофизика электромагнитных воздействий (основы дозиметрии). М.: Энергоатомиздат. 1994. 256 с.
  20. Iskander M.F., Barber P.W., Durney C.H., Massoudi H. Irradiation of prolate spheroidal models of human in the near field of a short electric dipole // IEEE Trans. Microwave Theory Techn. 1980. V. 28(7). P. 801 - 807.
  21. Lachtakia A., Iskander M.F., Durney C.H., Massoudi H. Near-field absorption in prolate spheroidal models of humans exposed to a small loop antenna of arbitrary orientation // IEEE Trans. Microwave Theory Techn. 1981. V. 29(6). P. 588-594.
  22. Айзенберг Г.З. Антенны ультракоротких волн. М.: Связьиздат. 1957. 699 с.
  23. Исмаилов Э.Ш. Биофизическое действие СВЧ-излу­чений. М.: Энергоатомиздат. 1987. 144 с.
  24. Belyaev I.Ya., Shcheglov V.S., Alipov Ye.D., Polunin V.A. Resonance effect of millimeter waves in the power range of 10-19-3´10-3 W/cm2on E.coli cells at different concentrations // Bioelectromagnetics. 1996. V. 17. P. 312 - 321.
  25. Буткус Г.Т. Измерение электрического поля КВЧ-диа­пазона // Радиотехника и электроника. 1990. Т. 35.
    № 10. С. 2128-2133.
  26. Ряковская М.Л., Штемлер В.М., Кузнецов А.Н. Деп. рукопись «Поглощение энергии электромагнитных волн миллиметрового диапазона в биологических препаратах плоскослоевой структуры», деп. в ВИНИТИ за №801 от 15.11.1983. 42 c.
  27. Кинг Р., Смит Г.Антенны в материальных средах. М.: Мир. 1984.  С. 261-277.
  28. Burkhardt M., Poković K., Gnos M. et al.Numerical and experimental dosimetry of Petri dish exposure setups // Bioelectromagnetics. 1996. V.17(6). P. 483-493.
  29. Schönborn F., Poković K., Burkhardt M., Kuster N. Basis for optimization of in vitro exposure apparatus for health hazard evaluations of mobile communications // Bioelectromagnetics. 2001. V. 22(8). P. 547 - 559.
  30. Chou C.K., Guy A.W., Johnson P.B. SAR in rats exposed in 2450 MHz circularly polarized waveguides. - Bioelectromagnetics. 1984. V. 5(4). P. 389-398.
  31. Allis J.W., Blackman C.F., Fromme M.L., Benane S.G. Measuring of microwave radiation absorbed by biological systems. I. Analysis of heating and cooling data // Radio Science. 1977. V.12.N.6(S). P. 1 - 8.
  32. Dunscombe P.B., Constable R.T., McLellan J. Minimizing the self-heating artifacts due to the microwave irradiation of thermocouples // Int. J. Hyperthermia. 1988. V. 4(4). P. 437-445.
  33. Alekseev S.I., Ziskin M.C. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects // IEEE Trans. Biomed. Eng. 2001. V. 48. P. 1013 - 1019.
  34. Guy A.W. Analysis of electromagnetic fields induced in biological tissue by thermographic studies on equivalent phantom models // IEEE Trans. MicrowaveTheoryTechn. 1971. V. 19(2). P. 205-214.
  35. Иваницкий Г.Р., Деев А.А., Хижняк Е.П., Хижняк Л.Н. Современное матричное тепловидение в биомедицине. Альманах клинической медицины. М.: МОНИКИ. 2008. Т. XVII. Ч. II. С. 58-62.
  36. Гапеев А.Б., Сафронова В.Г., Чемерис Н.К., Фесенко Е.Е. Модификация активности перитонеальных нейтрофилов мыши при воздействии миллиметровых волн в ближней и дальней зонах излучателя // Биофизика. 1996. Т. 41. Вып. 1. С. 205 - 219.
  37. Гапеев А.Б., Соколов П.А., Чемерис Н.К.Исследование поглощения энергии электромагнитного излучения крайне высоких частот в коже крысы с использованием различных дозиметрических методов и подходов // Биофизика. 2002. Т. 47. Вып. 4. С. 759-768.
  38. AlekseevS.I., ZiskinM.C. Local heating of human skin by millimeterwaves: akineticsstudy // Bioelectromagnetics. 2003. V. 24. P. 571-581.
  39. Alekseev S.I., Radzievsky A.A., Szabo I., Ziskin M.C.Local heating of human skin by millimeter waves: effect of blood flow // Bioelectromagnetics. 2005. V. 26. P. 489-501.
  40. Foster K.R., Kritikos H.N., Schwan H.P. Effect of surface cooling and blood flow on the microwave heating of tissue // IEEE Trans. Biomed. Eng. 1978. V. 25. P. 313-316.
  41. Walters T.J., Ryan K.L., Nelson D.A. et al. Effects of blood flow on skin heating induced by millimeter wave irradiation in humans // Health Physics. 2004. V. 86. P. 115-120.
  42. Alekseev S.I., Ziskin M.C. Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models // Bioelectromagnetics. 2009. V. 30(1). P. 52-58.
  43. Alekseev S.I., Ziskin M.C. Reflection and absorption of millimeter waves by thin absorbing layers // Bioelectromagnetics. 2001. V. 21. P. 264-271.
  44. Кисляков А.Г. Глубина проникновения миллиметровых радиоволн в кожу человека // Радиотехника и электроника. 1994.Т.39. № 11. С. 1852-1858.
  45. Orcutt N., Gandhi O.P. A 3-d impedance method to calculate power deposition in biological bodies subjected to time varying magnetic fields // IEEE Trans. BiomedicalEngineering. 1988. V. 35(8). P. 577-583.
  46. Виноградов С.В., Пирогов Ю.А. Расчет распределения напряженности электрического поля в многослойных системах резонансного типа // Вестник Московского университета, Сер. 3 Физ.Астрономия. 1983. Т. 24(4). С. 50-52.
  47. Борн М., Вольф Э. Основы оптики. М.: Наука. 1970. 855 c.
  48. Козарь А.В., Колесников В.С., Пирогов Ю.А.Распределение напряженности электрического поля в многослойных системах резонансного типа // Вестник Московского университета. Сер. 3. Физика. Астрономия. 1978.Т. 19(1). С. 78-86.
  49. Alekseev S.I., Ziskin M.C. Millimeter wave power density in aqueous biological samples // Bioelectromagnetics. 2001. V. 22. P. 288-291.
  50. Виноградов С.В., Екжанов А.Е., Пирогов Ю.А. Рекуррентный метод исследования нестационарных режимов многослойных интерференционных систем // Вестник Московского университета. Сер. 3. Физика. Астрономия. 1984.Т. 25(3). С. 62-64.
  51. Alekseev S.I., Ziskin M.C.Human skin permittivity determined by millimeter wave reflection measurements // Bioelectromagnetics. 2007. V. 28(5). P. 331-339.
  52. Alekseev S.I., Radzievsky A.A., Logani M.K., Ziskin M.C.Millimeter wave dosimetry of human skin // Bioelectromagnetics. 2008. V. 29(1). P. 65-70.
  53. Alekseev S.I., Szabo I., Ziskin M.C. Millimeter wave reflectivity used for measurement of skin hydration with different moisturizers // Skin Research and Technology. 2008. V. 14. P. 390-396.
  54. Alekseev S.I., Gordiienko O.V., Ziskin M.C. Reflection and penetration depth of millimeter waves in murine skin // Bioelectromagnetics. 2008.V. 29(5).P. 340-344.