350 rub
Journal Biomedical Radioelectronics №12 for 2009 г.
Article in number:
Distinction of Datalogging and Technique for Determination Parameters of Magnetoencephalogram of Human and Animal by using Superconducting Magnetometry in a Weakly Shielded Room
Authors:
I.A.Sinelnikova, Ye.P.Lobkayeva
Abstract:
The paper shows the possibility for applying some known methods of digital signal processing to study superweak noisy nonstationary signals of a biomagnetic field, which were produced by superconducting magnetometry using a single-channel SQUID gradiometer [1] in a weakly shielded room. The signal being measured while researching weak and superweak biomagnetic fields (10-10-10-13 Tl) by this method always contain high-amplitude noise components of industry produced magnetic fields, geomagnetic field (GMF) and noise of a measuring complex which are million times higher of a level of signal being measured. This is a considerable restriction for SQUID-magnetometry to be adopted in a clinical practice. It is considered that usage of electronic schemes of filtration of biomagnetic signals is not always possible without loss of information which is the often reason of considerable distortions or complete losses of the final results of measurements. The mathematical processing technique has been developed. It is aimed at selecting a magnetoencephalogram (MEG) from the noisy biomagnetic field signal and estimating its dynamic parameters.A mathematical analog of a digital recursive adaptive filter has been developed. Its frequency response allows both suppressing high-amplitude nonstationary noise components caused by geomagnetic variations and a power-line frequency electromagnetic field, and eliminating the energy spreading influence on the MEG component amplitudes. It has been concluded that it is possible to reduce the time of signal accumulation and to select it by the developed technique due to decrease of the influence produced by nonstationary noise on MEG components after their removal with a mathematical adaptive filter analog. In some cases this allows using not a smoothed estimate, but restricting to a sample estimate of a spectral density. The mathematical biosystem model has been modified to calculate and estimate the changes in amplitude-frequency and phase-frequency characteristics of MEG. The software has been developed to computerize mathematical processing of the experimental data. It has been tested on real biomagnetic cerebral activity signals of rats and individuals. An application of a method developed to recognize a human`s or an animal`s MEG from a strongly-noised biomagnetic signal allows to involve superconducting magnetometry in encephalographic clinical and exploratory research and to estimate its advantages. In addition to the method considered the superconducting magnetometry allows to receive extra independent diagnostic information about a psychophysiological state of a human or an animal researching an organism`s response on a magnetic interaction.
Pages: 3-11
References
  1. Wilyamson S.D., Kaufman L.D. Biomagnetism //J. Magn. Materials. 1981. V. 22. N. 2. P. 131 - 197.
  2. Измерительная система на основе тонкоплёночного интегрального СКВИДа постоянного тока (ПТ СКВИД). Руководство по эксплуатации. М.: НПО «Криотон». 1995.
  3. Холодов Ю.А., Козлов А.Н., Горбач А.М. Магнитные поля биологических объектов. М.: Наука. 1987.
  4. Кларк Дж. Принципы действия и применения СКВИДов // ТИИЭР. 1989. Т.77. №8. С.96 - 100.
  5. Киршвинк Дж., Джонс А. Биогенный магнетит и магниторецепция. В 2-х т. / пер. с англ. М.: Мир. 1989. Т.1. 352 с.
  6. Макс Ж. Методы и техника обработки сигналов при физических измерениях. В 2-х т. / пер. с англ. М.: Мир. 1983. Т.1. 312 с.
  7. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения / пер. с англ. М.: Мир. 1972.
  8. Romany G.L., Wilyamson S.D., Kaufman L.D.  Biomagnetic instrumentation // Rev. Sci. Instruments.1982. V. 53. № 12. P. 1815 - 1845.
  9. Кнеппо П., Титомир Л.И. Биомагнитные измерения. М.: Энергоатомиздат. 1989.
  10. Уидроу Б., Стирнз С. Адаптивная обработка сигналов / пер. с англ. М.: Радио и связь. 1989.
  11. Синельникова И.А., Лавров Л.М. Модельный эксперимент по определению возможности использования методики обнаружения сверхслабого периодического сигнала ЭМП на фоне высокоамплитудного шума при измерении методом сверхпроводящей магнитометрии // Труды РНТОРЭС им. А.С. Попова. Вып 4. Москва. 2004.
  12. Бендат Дж., Пирсол А. Прикладной анализ случайных данных / пер. с англ. М.: Мир. 1989.
  13. Кулаичев А.П. Компьютерный контроль процессов и анализ сигналов. М.: Информатика и компьютеры. 1999.
  14. Рабинер Л., Гоулд Б. Теория и применение ЦОС / пер. с англ. М.: Мир. 1978.
  15. Елисеева И.И., Юзбашев М.М. Общая теория статистики. М.: Финансы и статистика. 2001.