M.V. Palkin1, M.V. Zenchenko2
1,2 Military Industrial Corporation Scientific Production Association of Mechanical Engineering JSC (Reutov, Moscow Region, Russia)
1,2 Bauman Moscow State University (Moscow, Russia)
1 mpalkin@vpk.npomash.ru, 2 m.v.zenchenko@vpk.npomash.ru
The development and modernization of on-board control systems and software motion stabilization of aircraft (aircraft) to adaptive control and stabilization systems is an urgent problem today. The development and refinement of such systems makes it possible to improve the quality indicators of the system, thereby expanding the areas and ranges of aircraft applications.
Goal – to develop a technique for adaptive aircraft stabilization based on parametric identification of aircraft characteristics during flight, which makes it possible to improve system quality indicators in comparison with existing software motion systems.
A description of the operating procedure of the on-board adaptive X-wing atmospheric aircraft stabilization system in the flight section, performed according to a normal aerodynamic scheme, with a "plus" aerodynamic rudder scheme, is given. An approach is shown to estimate the immeasurable coordinates of the aircraft's state vector, the angles of attack and glide, and to refine the aerodynamic characteristics of the aircraft, embedded in pre–flight modeling, in order to update the stabilization contour settings in flight. The technique, in the form of an algorithm, is implemented on an autonomous flight simulation stand, its operability is shown, and computational examples are given.
The results of the study can be used in the development of aircraft motion control systems.
Palkin M.V., Zenchenko M.V. Adaptive stabilization methodic of aircraft based on parametrical object identification in flight-mode. Achievements of modern radioelectronics. 2025. V. 79. № 9. P. 42–48. DOI: https://doi.org/10.18127/ j20700784-202509-06 [in Russian]
- Korsun O.N., Stulovskij A.V. Pryamoj metod formirovaniya optimal'nogo programmnogo upravleniya letatel'nym apparatom. Izv. RAN. Teoriya i sist. upr. 2019. № 2. S. 75–89 [in Russian].
- Andrievskij B.R., Fradkov A.L. Adaptivnoe upravlenie letatel'nym apparatom s identifikaciej na skol'zyashchih rezhimah. UBS. 2009. № 26. S. 113–144 [in Russian].
- Pervushina N.A., Frolova A.D. Razrabotka adaptivnoj sistemy stabilizacii dlya bespilotnogo letatel'nogo apparata samoletnogo tipa. Problemy upravleniya. 2022. Vyp. 5. S. 3–15 [in Russian].
- Kozlov Yu.M., Yusupov R.M. Bespoiskovye samonastraivayushchiesya sistemy. M.: Nauka. 1969 [in Russian].
- Brajson A., Ho Yu-Shi. Prikladnaya teoriya optimal'nogo upravleniya. M.: Mir. 1972 [in Russian].
- Zenchenko M.V. Adaptivnaya stabilizaciya letatel'nogo apparata na osnove identifikacii aerodinamicheskih harakteristik v processe poleta. Raketno-kosmicheskaya tekhnika. Seriya XIV. Vyp. 1(61). 2017. S. 127–133 [in Russian].
- Ostoslavskij I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel'nyh apparatov. M.: Mashinostroenie. 1969 [in Russian].
- Bodner V.A. Sistemy upravleniya letatel'nymi apparatami. M.: Mashinostroenie. 1973 [in Russian].
- Zenchenko M.V. Ob odnom podhode k identifikacii aerodinamicheskih harakteristik sverhzvukovogo letatel'nogo apparata. Vestnik Koncerna PVO «Almaz – Antej». 2016 g. № 3(11). S. 5–11 [in Russian].
- Brammer K., Ziffling G. Fil'tr Kalmana – B'yusi. Determinirovannoe nablyudenie i stohasticheskaya fil'traciya. M.: Nauka. 1982 [in Russian].

