350 rub
Journal Achievements of Modern Radioelectronics №7 for 2025 г.
Article in number:
Using symbolic-topological method for stability analysis of linear circuits
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202507-02
UDC: 621.37
Authors:

D.V. Shushpanov1

1 Bonch-Bruevich Saint Petersburg State University of Telecommunications (St. Petersburg, Russia)

1 dimasf@inbox.ru

Abstract:

Stability analysis of a linear circuit is an important task. The stability theory of linear circuits historically went parallel to the mathematical concept of stability, but later the stability theory of linear circuits was consolidated in the automatic control theory (ACT) and is used practically unchanged in the electrical circuits theory (ECT). The ACT using, on the one hand, allows the application of stability theory to a wide range of problems (mechanical, thermal, economic, etc.), but ACT, unfortunately, does not take into account all the features of an electrical circuit. Therefore, it is very important to consider the linear circuit stability from the position of ECT, i.e. to consider the use of topological methods for stability analysis. This will allow us to expand the stability theory of linear electric circuits. The article discusses the possible advantages of symbolic-topological methods using (the circuit determinants method and the «Bode surface» using) in the stability analysis of linear electrical circuits with negative feedback, using various stability criteria. The possibility of numerical determination of natural frequencies of an electric circuit using the «Bode surface» is shown. The possibility of measuring the frequency characteristics of the Mikhailov hodograph in a linear electric circuit is shown. Additional capabilities of the Routh–Gurvits and Mikhailov criteria are shown when using the circuit determinants method – the stability criteria are converted from numerical to analytical. A complete formula for finding the circuit determinant of a linear electric circuit with feedback has been obtained. Various criteria in the selection of a cross-section for breaking the negative feedback loop for the correct loop gain determination are shown. A formula for loop gain measuring in any place of linear electric circuit is obtained. A new meaning of the basic formulas of the circuit determinants method is shown from the point of view of circuit stability.

Pages: 14-47
For citation

Shushpanov D.V. Using symbolic-topological method for stability analysis of linear circuits. Achievements of modern radioelectronics. 2025. V. 79. № 7. P. 14–47. DOI: https://doi.org/10.18127/j20700784-202507-02 [in Russian]

References
  1. Gorovits A.M. Sintez sistem s obratnoy svyaz'yu. Per. s angl. pod red. M.V. Meerova. M.: Sov. radio. 1970. [in Russian]
  2. Dmitrikov V.F., Shushpanov D.V. Ustoychivost' i elektromagnitnaya sovmestimost' ustroystv i sistem elektropitaniya. M.: Goryachaya liniya – Telekom. 2018. [in Russian]
  3. Dmitrikov V.F., Isaev V.M., Kunevich A.V., Shushpanov D.V., Petrochenko A.Yu. Vysokochastotnaya model' katushki induktivnosti. Nanoindustriya. 2021. T. 14. № S7 (107). S. 415–417. DOI: 10.22184/1993-8578.2021.14.7s.415.417. [in Russian]
  4. Dmitrikov V.F., Shushpanov D.V. Ekvivalentnaya skhema zameshcheniya dielektrika v shirokom diapazone chastot (0 Gts - 500 MGts). Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2022. T. 25. № 3. S. 43–57. DOI: 10.18469/1810-3189.2022.25.3.43-57.
  5. Beletskiy A.F. Teoriya lineynykh elektricheskikh tsepey: Uchebnik. Izd. 2-e. SPb.: Lan'. 2009. [in Russian]
  6. Maxwell J.C. I. On governors. Proc. Roy. Soc. London, 1868. V. 16. P. 270–283. DOI: 10.1098/rspl.1867.0055. [in Russian]
  7. Lumbreras D., Barrios E.L., Urtasun A., Ursúa A., Marroyo L., Sanchis P. On the Stability of Advanced Power Electronic Converters: The Generalized Bode Criterion. IEEE Transactions on Power Electronics, Sept. 2019. V. 34. № 9. P. 9247–9262. DOI: 10.1109/TPEL.2018.2884892.
  8. Routh E.J. A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. New York, NY, USA: Macmillan and Company. 1877.
  9. Hunvitz A. Ubrer die Bedingungen, unter aelchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. Mathenzutical Annual, 1895. V. 46. P. 273–284. DOI: 10.1007/BF01446812.
  10. Krasnov M.L., Kiselev A.I., Makarenko G.I. Funktsiya kompleksnogo peremennogo. Operatsionnoe ischislenie. Teoriya ustoychivosti. M: Nauka. 1971. [in Russian]
  11. Nikulin E.A. Osnovy teorii avtomaticheskogo upravleniya. Chastotnye metody analiza i sinteza system: Ucheb. posobie dlya vuzov. SPb.: BKhV-Peterburg. 2004. [in Russian]
  12. Barkhausen H. Lehrbuch der Elektronen-Röhren und ihrer technischen Anwendungen. In Textbook of Electron Tubes and Their Technical Applications. V. 3. Leipzig, Germany: S. Hirzel Verlag, 1935.
  13. Nyquist H. Regeneration theory. Bell Labs Tech. J., 1932. V. 11. № 1. P. 126–147. DOI: 10.1002/j.1538-7305.1932.tb02344.x.
  14. Balaz I., Brezovic Z., Minarik M., Kudjak V., Stofanik V. Barkhausen criterion and another necessary condition for steady state oscillations existence. 2013 23rd International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 2013. P. 151–155. DOI: 10.1109/RadioElek.2013.6530906.
  15. Bongiorno J., Graham D. An extension of the Nyquist-Barkhausen stability criterion to linear lumped-parameter systems with time-varying elements. IEEE Transactions on Automatic Control, April 1963. V. 8. № 2. P. 166–170. DOI: 10.1109/TAC.1963.1105537.
  16. Bode G. Teoriya tsepey i proektirovanie usiliteley s obratnoy svyaz'yu. M.: Gosud. izd-vo inostrannoy lit-ry. 1948. [in Russian]
  17. Roberts G.W. A Modified Nyquist Stability Criteria that Takes into Account Input/Output Circuit Loading Effects. 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS), Toulon, France. 2021. P. 1–4. DOI: 10.1109/NEWCAS50681.2021.9462771.
  18. Hurst P.J. A Comparison of Two Approaches to Feedback Circuit Analysis. IEEE Transactions on Education, V. 35. № 3. August 1992. P. 253–261. DOI: 10.1109/13.144656.
  19. Middlebrook R.D. Measurement of loop gain in feedback systems. Int. J. Electronics. 1975. V. 38. P. 485–512. DOI: 10.1080/00207217508920421.
  20. Shushpanov D.V. O postroenii mnogokonturnoy OOS v impul'snom preobrazovatele napryazheniya. Aviatsionnaya tekhnika. 2010. № 3.
    [in Russian]
  21. Middlebrook R.D. The general feedback theorem: a final solution for feedback systems. IEEE Microwave Magazine. April 2006. V. 7. № 2. P. 50–63. DOI: 10.1109/MMW.2006.1634022.
  22. Vorpérian V. Fast Analytical Techniques for Electrical and Electronic Circuits. Cambridge University Press. 2011.
  23. Basso C.P. Designing Control Loops for Linear and Switching Power Supply: A Tutorial Guide. Boston. London Artech House. 2012.
  24. Middlebrook R.D., Vorperian V., Lindal J. The N Extra Element Theorem. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. Sept. 1998. V. 45. № 9. P. 919–935. DOI: 10.1109/81.721258.
  25. Kurganov S.A., Filaretov V.V. Skhemno-algebraicheskoe modelirovanie i raschet lineynykh elektricheskikh tsepey: Ucheb. posobie. Ul'yanovsk: UlGTU. 2005. [in Russian]
  26. Kurganov S.A., Filaretov V.V. Simvol'nyy analiz lineynykh analogovykh i diskretno-analogovykh elektricheskikh tsepey: Ucheb. posobie. Ul'yanovsk: UlGTU. 2008. [in Russian]
  27. Kurganov S.A., Filaretov V.V. Topologicheskie pravila i formuly dlya analiza elektricheskikh tsepey bez izbytochnosti. Ul'yanovsk: UlGTU. 2010. [in Russian]
  28. Filaretov V.V. Programma simvol'nogo analiza CIRSYM: istoriya sozdaniya, struktura i funktsii. Sintez, analiz i diagnostika elektronnykh tsepey: Mezhdunar. sb. nauch. tr. Ul'yanovsk: UlGTU. 2012. № 10. S. 158–171. [in Russian]
  29. Programma simvol'nogo analiza i diagnostiki CIRSYM. URL: http://intersyn.net/cirsym.html. [in Russian]
  30. Smirnov V.S. Simvol'nyy analiz lineynykh modeley moshchnykh klyuchevykh ustroystv v programme FASTMEAN. Skhemno-topologicheskie modeli aktivnykh elektricheskikh tsepey: sintez, analiz, diagnostika: Trudy mezhdunar. konf. «Kontinual'nye algebraicheskie logiki, ischisleniya i neyroinformatika v nauke i tekhnike – KLIN-2006» (g. Ul'yanovsk, 16–18 maya 2006 g.). Ul'yanovsk: UlGTU. 2006. T. 3. S. 181–187. [in Russian]
  31. Ofitsial'nyy sayt programmy FASTMEAN. URL: http://www.fastmean.ru. [in Russian]
  32. Kurganov S.A., Filaretov V.V. Obobshchennye bezyzbytochnye formuly dlya chuvstvitel'nosti skhemnykh funktsiy lineynykh elektricheskikh tsepey. Elektrichestvo. 2017. № 2. S. 44–50. [in Russian]
  33. Gorshkov K.S., Tokarev Yu.V., Filaretov V.V. Analiz i strukturnyy sintez elektricheskikh tsepey metodom skhemnykh opredeliteley: Ucheb. posobie. Ul'yanovsk: UlGTU. 2008. [in Russian]
  34. Kurganov S.A., Filaretov V.V. Simvol'nyy analiz i diagnostika lineynykh elektricheskikh tsepey metodom skhemnykh opredeliteley: Ucheb. posobie. Ul'yanovsk: UlGTU. 2003. [in Russian]
  35. Kurganov S.A., Filaretov V.V. Nakhozhdenie povrezhdeniya v kabel'noy seti metodom vydeleniya parametrov. Izv. vuzov. Elektromekhanika. 2024. T. 67. № 4. S. 70–77. DOI: 10.17213/0136-3360-2024-4-70-77. [in Russian]
  36. Kurganov S.A. O nakhozhdenii nuley i polyusov elektricheskikh tsepey po stepennym polinomam skhemnykh funktsiy. V sbornike: Sintez, analiz i diagnostika elektronnykh tsepey. Filaretov V.V. Mezhdunar. sb. nauch. trudov. Ul'yanovskiy gosudarstvennyy tekhnicheskiy universitet; pod red. V.V. Filaretova. Ul'yanovsk. 2015. S. 251–257. [in Russian]
  37. Kurganov S.A., Solov'ev V.A. O chastotnom analize ustoychivosti lineynykh elektricheskikh tsepey po kriteriyu Mikhaylova. Mezhdunarodnyy sbornik nauchnykh trudov «Sintez, analiz i diagnostika elektronnykh tsepey». Ul'yanovsk: UlGTU. 2018. V. 15. S. 89–94.
  38. Khorn R., Dzhonson Ch. Matrichnyy analiz. M.: Mir. 1989. [in Russian]
  39. Gridin V.N., Mikhaylov V.B., Shusterman L.B. Chislenno-analiticheskoe modelirovanie radioelektronnykh skhem. M.: Nauka. 2008.
    [in Russian]
  40. Uilkinson Dzh.Kh. Algebraicheskaya problema sobstvennykh znacheniy. Per. s angl. M.: Nauka. 1970. [in Russian]
  41. Ofitsial'nyy sayt programmy SimOne. URL: https://www.eremex.ru/products/delta-design/simone. [in Russian]
  42. SimOne 3.0. Spravochnoe rukovodstvo. Dekabr' 2017. URL: https://www.eremex.ru/upload/iblock/11c/Spravochnoe-rukovodstvo-SimOne-3.0.pdf. [in Russian]
  43. Nebel G., Kleine U., Pfleiderer H.-J. Symbolic Pole/Zero Calculation Using SANTAFE. IEEE J. Solid State Circuits, July 1995. V. 30. № 7. P. 752–761. DOI: 10.1109/4.391114.
  44. Guerra O., Rodríguez-García J.D., Fernández F.V., Rodríguez-Vázquez A. A Symbolic Pole/Zero Extraction Methodology Based on Analysis of Circuit Time Constants. Analog Integrated Circuits and Signal Processing, May 2002. V. 31. № 2. P. 101–118. DOI: 10.1023/A:1015089810198.
  45. Hennig E. Matrix Approximation Techniques for Symbolic Extraction of Poles and Zeros. Analog Integrated Circuits and Signal Processing, May 2002. V. 31. № 2. P. 81–100. DOI: 10.1023/A:1015037826128.
  46. Radovanovic M. Extraction of Zeros and Poles of Combline Filters. 20th, Telecommunications Forum (TELFOR). 2012. P. 1552–1555. DOI: 10.1109/TELFOR.2012.6419517.
  47. Dirkse S., Ferris M.C., Munson T. The PATH Solver. URL: http://pages.cs.wisc.edu/~ferris/path.html.
  48. Hashemian R. Extraction of Poles and Zeros of an RC Circuit with Roots on the Real Axis. IEEE Trans. Circuits Syst. II, Exp. Briefs, August 2014. V. 61. № 8. P. 624–628. DOI: 10.1109/TCSII.2014.2327471.
  49. Hashemian R. Identification and Extraction of All Real Axis Poles and Zeros in RC and RL Circuits. IEEE Inter. Conf. on Electro/Information Technology EIT2015, Northern Illinois University, May 21-23. 2015. P. 397–402. DOI: 10.1109/EIT.2015.7293375.
  50. Hashemian R. S-Plane Bode Plots—Identifying Poles and Zeros in a Circuit Transfer Function. Proceedings of the IEEE LASCAS 2015 Conference, Montevideo, Uruguay (February 24–27, 2015). 2015. P. 1–4. DOI: 10.1109/LASCAS.2015.7250464.
  51. Amelina M.A., Amelin S.A. Programma skhemotekhnicheskogo modelirovaniya Micro-CAP. Versii 9, 10. Smolensk: Smolenskiy filial NIU MEI. 2012. [in Russian]
  52. Micro-Cap 12. Electronic Circuit Analysis Program Reference Manual. Spectrum Software (1982 – 2018). 11th Edition. June 2018. URL: https://www.iee.et.tu-dresden.de/~jmueller/simulation/soft/microcap/MC12.RefManual.pdf.
  53. Hashemian R. RC and RL to LC Circuit Conversion, and its Application in Poles and Zeros Identification. 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco. 2016. P. 205–208. DOI: 10.1109/ICECS.2016.7841168
  54. Samylin I.N., Shushpanov D.V., Sayko N.Yu. Otsenka pogreshnosti metoda usredneniya i linearizatsii dlya impul'snogo preobrazovatelya napryazheniya ponizhayushchego tipa s obratnoy svyaz'yu po vykhodnomu napryazheniyu. Trudy ucheb. zavedeniy svyazi. 2005. № 173. S. 199–211. [in Russian]
  55. Kurganov D.S., Kurganov S.A., Filaretov V.V. Nakhozhdenie poryadka slozhnosti proizvol'noy aktivnoy elektricheskoy tsepi metodom skhemnykh opredeliteley. Sintez, analiz i diagnostika elektronnykh tsepey: Mezhdunar. sb. nauch. trudov. Ul'yanovsk: UlGTU. 2008. S. 140–151. [in Russian]
  56. Chetti P. Proektirovanie klyuchevykh istochnikov pitaniya. Per. s angl. M.: Energoatomizdat. 1990. [in Russian]
  57. Shushpanov D.V. Vysokoeffektivnye impul'snye preobrazovateli napryazheniya s ShIM i raspredelennye sistemy elektropitaniya na ikh osnove. Diss. k.t.n. SPb. 2005. [in Russian]
  58. Smirnov V.S. Ekvivalentnye chastotnye kharakteristiki tranzistornykh klyuchevykh ustroystv s otritsatel'noy obratnoy svyaz'yu. Diss. k.t.n. SPb. 2007. [in Russian]
  59. Riddley R.B. Power Supply Design. V. 1: Control. Ridley Engineering, Inc. 2012.
  60. Cho B.H., Lee F.C.Y. Measurement of Loop Gain with the Digital Modulator. IEEE Transactions on Power Electronics. 1986. V. PE-1. № 1. P. 55–62. DOI: 10.1109/TPEL.1986.4766277.
  61. Kondrath N. Relative Stability of the Inner-Current Loop of Peak Current-Mode Controlled PWM DC-DC Converters in CCM. PhD Dissertation, Wright State University, June, 2010.  DOI: 10.1109/ISCAS.2009.5118180.
  62. Loop Gain Simulation. URL: https://sites.google.com/site/frankwiedmann/loopgain.
  63. Tian M., Visvanathan V., Hantgan J., Kundert K. Striving for Small-Signal Stability. IEEE Circuits and Devices Magazine, January 2001. V. 17. № 1. P. 31–41. DOI: 10.1109/101.900125.
  64. Nedorezov M.V., Filaretov V.V. Neyavnoe vydelenie parametrov upravlyaemykh istochnikov v programme CIRSYM. Mezhdunar. sb. nauch. trudov «Sintez, analiz i diagnostika elektronnykh tsepey». Ul'yanovsk: UlGTU. 2017. V. 14. S. 21–34. [in Russian]
  65. Hashemian R. Symbolic representation of network transfer functions using norator-nullator pairs. Electronic circuits and systems. 1977. V. 1. № 6 (November). P. 193–197. DOI: 10.1049/ij-ecs.1977.0032.
  66. Hashemian R. Application of Nullors in Symbolic Single Port Transfer Functions Using Admittance Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea. 2021. P. 1–5, DOI: 10.1109/ISCAS51556.2021.9401272.
  67. Ruan X. et al. Reconsideration of Loop Gain and Its Measurement in DC–DC Converters. IEEE Transactions on Power Electronics. 2019. V. 34. № 7. P. 6906–6921. DOI: 10.1109/TPEL.2018.2873074.
  68. Dmitrikov V.F., Shushpanov D.V. Izmerenie petlevogo usileniya v IPN s dvukhkonturnoy OOS. Trudy XII mezhdunar. nauch.-tekhnich. konf. «Aktual'nye problemy elektronnogo priborostroeniya» (APEP – 2014) 2-4 oktyabrya 2014 g. Novosibirsk. 2014. T. 7. S. 226–232. [in Russian]
  69. Panov Y., Jovanovic M.M. Loop Gain Measurement of Paralleled DC–DC Converters with Average-Current-Sharing Control. IEEE Transactions on Power Electronics. Nov. 2008. V. 23. № 6. P. 2942–2948. DOI: 10.1109/TPEL.2008.2002955.
  70. Dmitrikov V.F., Shushpanov D.V., Kim S.M., Petrochenko A.Yu., Zaytseva Z.V. Vliyanie perekrestnoy svyazi na ustoychivost' raboty parallel'no vklyuchennykh impul'snykh preobrazovateley napryazheniya. Prakticheskaya silovaya elektronika. 2015. № 3 (59). S. 12–19. [in Russian]
  71. Middlebrook R.D. Input filter consideration in design and application of switching regulators. Proc. IEEE Ind. Applicat. Soc. Annu. Meeting, Oct. 1976. P. 94–107.
  72. Feussner W. Ueber Stromverzweiun in netzformien Leitern. Annalen der Physik 1902. Bd 9. № 13. P. 1304–1329. DOI: 10.1002/andp.19023141320.
Date of receipt: 06.06.2025
Approved after review: 18.06.2025
Accepted for publication: 30.06.2025