A.A. Luchin
Expert and Analytical Center (Analytical Center) (Moscow, Russia)
lu4in.tol@mail.ru
Improving the quality of information supplied by radar systems to solve the tasks of detection and classification of objects, as well as decision-making is an urgent direction of technical improvement, including for systems that form radar images. To combat the effects of interference and distortions of signals affecting the quality of the output information, various filtering methods are used, including the use of transformations that translate the signal into a different space. The Fourier transform is most often used for these purposes, but when analyzing non-stationary signals, one has to resort to additional techniques that reduce the energy and computational efficiency of the transformation, therefore, alternative transformations are considered, including those with good localization of the basis functions, for example, the Weyl–Heisenberg frame decomposition. Due to the redundancy of the frame, the question of creating a filtering algorithm that utilizes this property arises.
The purpose of the research was to study the correlation properties of the Weyl–Heisenberg frame decomposition coefficients on the example of radar images; to develop an algorithm for filtering spatial noise and image distortions based on the studied properties; to obtain and describe the results of the algorithm.
The local groups of the decomposition coefficients were allocated on account of frame localization structure that take place due to discrete frequency-time shifts of the initializing function in the basis of the frame construction procedure. A set of local groups was analyzed by constructing a covariation matrix. The total correlation parameter was introduced and used for covariation matrix thresholding, which takes place as the algorithm core operation. Afterwards the local groups set was processed by applying the mask based on the thresholding results. The correlation of objects in the original image with local groups of decomposition coefficients with certain values was revealed during the experiments through thresholding.
The developed filtering algorithm can be used in processing radar images obtained from ground-based circular radars to minimize the influence of extraneous objects, as well as to build a terrain map of the controlled area. Though the structure of local groups and covariation matrix depends on the structure of the original image, method can be used with various images regarding object detection.
Luchin A.A. Application of well-localized Weyl-Heisenberg frames for radar images filtering based on correlation properties of decomposition coefficients. Achievements of modern radioelectronics. 2025. V. 79. № 6. P. 83–91. DOI: https://doi.org/10.18127/j20700784-202506-10 [in Russian]
- Avetisyan T.V., Pitolin M.V., Preobrazhenskij Yu.P. Modelirovanie processov vosstanovleniya radiolokacionny`x izobrazhenij. Modelirovanie, optimizaciya i informacionny`e texnologii. 2023. T. 12. № 4(43). DOI 10.26102/2310-6018/2023.43.4.008. EDN RPHSJQ.
- Gonsales R., Vuds R. Cifrovaya obrabotka izobrazhenij. Izd-e 3-e, ispr. i dop. M.: Texnosfera. 2012. 1104 s.
- Jindal D., Vashisht L. Nonstationary frames of translates and frames from the Weyl–Heisenberg group and the extended affine group. Journal of Physics A: Mathematical and Theoretical. 2023. T. 56. № 345204. 20 s. DOI: 10.48550/arXiv.2209.15054
- Miroshnichenko A.V., Volchkov V.P. Primenenie frejmov Vejlya–Gejzenberga v zadachax interpolyacii i e`kstrapolyacii signalov. Telekommunikacii i informacionny`e texnologii. 2019. T. 6. № 1. S. 134–141. EDN MSBJQG.
- Miroshnichenko A.V., Volchkov V.P. E`kstrapolyaciya nestacionarny`x zashumlenny`x signalov s pomoshh`yu frejmov Vejlya–Gejzenberga. Telekommunikacii i informacionny`e texnologii. 2019. T. 6. № 2. S. 42–50. EDN PREPMA.
- Huang Y.J., Wang X., Li X., Moran B. Inverse Synthetic Aperture Radar Imaging Using Frame Theory. IEEE Transactions on Signal Processing. 2012. № 60(10). S. 5191–5200. DOI:10.1109/tsp.2012.2208107
- Amosov O.S., Amosova S.G., Muller N.V. Identification of Potential Risks to System Security Using Wavelet Analysis, the Time-and-Frequency Distribution Indicator of the Time Series and the Correlation Analysis of Wavelet-Spectra / International Multi-Conference on Industrial Engineering and Modern Technologies. 2018. DOI:10.1109/fareastcon.2018.8602675
- Volchkov V.P. Novy`e texnologii peredachi i obrabotki informacii na osnove xorosho lokalizovanny`x signal`ny`x bazisov. Nauchny`e vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: E`konomika. Informatika. 2009. № 15(70). S. 181–189. EDN ORKFYJ.
- Wang H., Jiang W., Lei C., Qin S., Wang J. A Robust Image Fusion Method Based on Local Spectral and Spatial Correlation. IEEE Geoscience and Remote Sensing Letters. 2014. № 11(2). S. 454–458. DOI:10.1109/lgrs.2013.2265915
- Volchkov V.P., Asiryan V.M. Szhatie izobrazhenij s ispol`zovaniem diskretnogo preobrazovaniya Vejlya–Gejzenberga. E`konomika. Informatika. 2020. T. 47. № 2. S. 412–421. DOI 10.18413/2687-0932-2020-47-2-412-421. EDN UWKSPC.
- Volchkov V.P. Sintez kompleksny`x signal`ny`x frejmov Vejlya–Gejzenberga s xoroshej chastotno-vremennoj lokalizaciej. Infokommunikacionny`e i radioe`lektronny`e texnologii. 2019. T. 2. № 1. S. 86–99. DOI 10.15826/icrt.2019.02.1.08. EDN QJEVEE.
- Volchkov V.P., Sannikov V.G. Sintez kompleksny`x dual`ny`x frejmov Vejlya–Gejzenberga dlya spektral`nogo analiza nestacionarny`x signalov. Infokommunikacionny`e i radioe`lektronny`e texnologii. 2019. T. 2. № 4. S. 503–514. EDN MDHXNM.
- Huang F., Chen D., Zhou L. Rotating machine fault diagnosis based on correlation filtering and reconstructed Morlet wavelet power spectral entropy / 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS). 2020. DOI: 10.1109/icmeas51739.2020.00008
- Wang S., Huang W., Zhu Z. K. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis. Mechanical Systems and Signal Processing. 2011. № 25(4). S. 1299–1320. DOI: 10.1016/j.ymssp.2010.10.013
- Petrov D. Algorithms for construction of orthogonal well-localized bases. Mathematical Models and Computer Simulations. 2010. № 2. S. 74–581. DOI: 10.1134/S2070048210050030

