V.I. Koshelev1, N.H. Trinh2
1,2 Ryazan State Radio Engineering University named after V.F. Utkin (Ryazan, Russia)
1 koshelev.v.i@rsreu.ru, 2 ngochieu.radioscientist@mail.ru
In radio engineering problems, the use of multichannel frequency filtering allows one to estimate the signal frequency. Digital fre-quency filtering based on the fast Fourier transform introduces frequency estimation error, which is associated with the discreteness of the frequency samples of the fast Fourier transform method. In the case of estimating the frequency of radio signal with non-uniform pulse repetition intervals (PRIs), the use of the classical fast Fourier transforms leads to an additional decrease in the accuracy of frequency estimation compared to estimating the frequency of radio signal with uniform PRIs. Therefore, it is relevant to consider the nature of modulation of radio signal with non-uniform PRIs in the frequency estimation algorithm. This article presents methods for increasing the accuracy of frequency estimation in multichannel frequency filtering of radio signal with non-uniform PRIs. Estimates of the frequency of radio signal with non-uniform PRIs were obtained using various methods and their comparative analysis was carried out. Based on the modified fast Fourier transform algorithm, corrections for the frequency estimate at the output of the fast Fourier transform block were calculated, taking into account the wobble parameters of the radio pulse repetition period. As an example, the results of frequency estimation are given for a signal-noise ratio of 30 dB and a wobble degree of the radio pulse repetition period of 0,2. Corrections to the frequency estimate were calculated, obtained by the maximum likelihood method, which for the 16-point and 128-point fast Fourier transform provides the minimum average value of the average attributed error 1,53⸱10–2 and 0,65⸱10–2, respectively. However, this method is only applicable to a rectangular window when calculating the fast Fourier transform. The interpolating parabola method allows you to apply different weighting windows to calculate the fast Fourier transform, it is not critical to the number of fast Fourier transform channels. Thus, with 16-point and 128-point fast Fourier transform using the Blackman-Harris window, the average values of the average attributed frequency estimation error are 4,27⸱10–2 and 4,30⸱10–2 respectively.
Koshelev V.I., Trinh N.H. Improving the accuracy of frequency estimation of radio signal with non-uniform pulse repetition intervals. Achievements of modern radioelectronics. 2025. V. 79. № 4. P. 35–47. DOI: https://doi.org/10.18127/j20700784-202504-04 [in Russian]
- Hikawa H., Jain V.K. Jamming canceler using interpolated FFT. IEEE International Conference on Communications, Including Super-comm Technical Sessions, Atlanta, GA, USA. 1990. V. 4. P. 1275–1279, doi: 10.1109/ICC.1990.117276
- Kravchenko N.I., Bakumov V.N. Predel`naya pogreshnost` izmereniya regulyarnogo doplerovskogo smeshheniya chastoty` meteosignalov. Izvestiya vy`sshix uchebny`x zavedenij. Radioe`lektronika. 1999. T. 42. № 4. S. 3–10.
- Kravchenko N.I., Lenchuk D.V. Predel`naya tochnost` izmereniya doplerovskogo smeshheniya chastoty` meteosignala pri ispol`zovanii pachki kogerentny`x signalov. Izvestiya vy`sshix uchebny`x zavedenij. Radioe`lektronika. 2001. T. 44. № 7. S. 68–80.
- Gasior M., Gonzalez J.L. Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation. AIP Conf. Proc. 2004. V. 732. № 1. P. 276–285. https://doi.org/10.1063/1.1831158
- Wang M., Zhang X. Method for frequency measurement with ApFFT based on FPGA. 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. 2015. P. 1177–1180. doi: 10.1109/IAEAC.2015.7428745
- Koshelev V.I., Gorkin V.N. Metody` spektral`nogo analiza v texnike cifrovoj obrabotki signalov. Uchebnoe posobie. Ryazan`: RGRTA. 2002. 96 s.
- Gorkin V.N. Optimizaciya algoritmov mnogokanal`noj spektral`noj obrabotki signalov v doplerovskom processore: Diss. k.t.n.: 05.12.04: zashhishhena 2002.
- Koshelev V.I., Andreev V.G., Belokurov V.A. Sovremenny`e metody` povy`sheniya e`ffektivnosti obnaruzheniya radiolokacionny`x signalov. M.: Goryachaya liniya – Telekom. 2016. 154 s.
- Luo J., Xiao H., Li C., Yang Y. A comparative study of interpolation discrete fourier transform algorithms under strong noise / 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China. 2016. P. 1–7. doi: 10.1109/PHM.2016.7819777
- Fan L., Qi G., Xing J., Jin J., Liu J., Wang Z. Accurate Frequency Estimator of Sinusoid Based on Interpolation of FFT and DTFT. IEEE Access. 2020. V. 8. P. 44373–44380. doi: 10.1109/ACCESS.2020.2977978
- Khettaoui B., Boudour M. Synchrophsor Estimation Using The Three-point Interpolated DFT Based On Polynomial Approximation. 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria. 2018. P. 1–5. doi: 10.1109/CISTEM.2018.8613613
- Kumar B.R., Mohapatra A., Chakrabarti S. Combined Two-Point and Three-Point Interpolated DFT for Frequency Estimation. 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India. 2020. P. 1–6. doi: 10.1109/NPSC49263.2020.9331874
- Al`rubei M.A., Pozdnyakov A.D. Ocenka chastoty` pri simmetrichnoj i nesimmetrichnoj strukture spektral`ny`x komponent diskretizirovannogo garmonicheskogo signal. Trudy` MAI. 2023. № 129. doi: 10.34759/trd-2023-129-15
- Savel`ev T.G. Uluchshenie parametrov radiolokacionnoj nablyudaemosti celi v RLS UVD metodami cifrovoj adaptivnoj prostranstvenno-doplerovskoj obrabotki e`xo-signalov: Diss. k.t.n.: 05.12.04: zashhishhena 2000.
- Profatilova G.A., Solov`ev G.N., Efremov V.S., Solov`ev A.G. Povy`shenie e`ffektivnosti sistem selekcii dvizhushhixsya tel v RLS upravleniya vozdushny`m dvizheniem. Vestnik MGTU im. N.E`. Baumana. Ser. «Priborostroenie». 2012. № 3. S 87–92.
- Spravochnik po radiolokacii / Pod red. M.I. Skolnika; per. s angl. pod red. V.S. Verby`. V 2 kn. Kn. 1. M.: Texnosfera. 2014. 672 s.
- Belyakov E.S., Kostrova T.G., Antuf`ev R.V., Kostrov V.V. Ustrojstvo otobrazheniya informacii o celyax v impul`snoj obzornoj RLS s vobulyaciej perioda sledovaniya zondiruyushhix signalov. Patent RF №2386978.
- Gorbunov Yu.N. Povy`shenie e`ffektivnosti obrabotki i formirovaniya signalov v RLS s SDCz metodami randomizacii. Zhurnal radioe`lektroniki. 2014. № 10.
- Bakulev P.A. Radiolokacionny`e sistemy`. M.: Radiotexnika. 2015. 437 s.
- Elagina K.A. E`ffektivnost` obnaruzhitelej signalov v usloviyax tochechny`x passivny`x pomex. Vestnik Koncerna PVO «Almaz-Antej». 2016. № 1. S. 69–75.
- Belokurov V.A., Koshelev V.I., Loginov S.N. Realizaciya algoritmov doplerovskoj fil`tracii signalov na baze sovremenny`x signal`ny`x processorov analog device. Voprosy` radioe`lektroniki. 2010. T. 2. № 3. S. 65–76.
- Koshelev V.I. Mnogokanal`naya doplerovskaya fil`traciya radiolokacionny`x signalov. Radiotexnika. 2012. № 3. S. 30–35.
- Bukvarev E.A., Ryabkov A.P. Optimizaciya mnogokanal`nogo kogerentnogo nakopitelya pachki impul`sov pri vobulyacii perioda zondirovaniya. Trudy` Nizhegorodskogo gosudarstvennogo texnicheskogo universiteta im. R.E. Alekseeva. 2012. № 2 (95). S. 31–40.
- Koshelev V.I. Kogerentnaya fil`traciya nee`kvidistantny`x posledovatel`nostej impul`sov v sistemax pervichnoj obrabotki radiolokacionny`x system. Uspexi sovremennoj radioe`lektroniki. 2014. № 10. S. 16–22.
- Koshelev V.I., Chin` N.X. E`ffektivnost` mnogokanal`noj doplerovskoj fil`tracii nee`kvidistantny`x posledovatel`nostej impul`sov. Cifrovaya obrabotka signalov. 2023. № 2. S. 3–8.
- Brammer Yu. A., Pashhuk I.I. Impul`sny`e i cifrovy`e ustrojstva. M.: Vy`sshaya shkola. 2003. 351 s.
- Kurosh A. G. Kurs vy`sshej algebry`. Izd. 11-e, stereo. M.: Nauka. 1975. 432 s.
- Koshelev V.I. Metody` i algoritmy` cifrovogo spektral`nogo analiza signalov. M.: KURS. 2021. 144 s.

