350 rub
Journal Achievements of Modern Radioelectronics №2 for 2025 г.
Article in number:
Multi-channel control of the spatial guidance device of radio engineering systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202502-02
UDC: 621.376.54; 621.311.6
Authors:

A.A.Chumachenko1, A.A. Bisov2, S.A. Bronov3, N.A. Nikulin4, D.D. Krivova5, P.V. Avlasko6

1,2 NPP Radiosvyaz JSC (Krasnoyarsk, Russia)
3 FSBEI of HE Krasnoyarsk State Agrarian University (Krasnoyarsk, Russia)
4–6 FSBEI of HE "Siberian Federal University" (Krasnoyarsk, Russia)
1 maijorishe@mail.ru, 2 glutamine@mail.ru, 3 sa_bronov@mail.ru, 4 nnikulin@sfu-kras.ru, 5 nulsapr@mail.ru, 6 pavlasko@sfu-kras.ru

Abstract:

The general principles of building an electric drive based on a multiphase dual-power inductor motor for radio engineering systems are considered. The presence of two windings on the stator, combined with the effect of electromagnetic reduction, makes it possible to rotate the rotor at very low speeds in the absence of mechanical gearboxes. This increases the reliability and accuracy of working out the specified angular movements. The design of the motor allows the use of eight control actions: amplitudes, frequencies, phase shifts of two supply voltages of alternating current, and in the case of using pulse width modulation according to the sinusoidal law, also the number of clock pulses for the period of quasi-sinusoidal voltage. An excessive number of control variables makes it possible to provide the same tasks for the angle of rotation and speed for different combinations of control actions, which makes it possible to additionally solve optimization problems according to various criteria.

Double-fed induction motors have redundant capabilities for controlling the speed and angle of rotation, which makes it possible to implement new effective control laws that are inaccessible to classic single-fed motors. The most promising is the phase control method. It allows implementing a step mode of motor operation with rotor rotation at a given angle without an external angle sensor. In addition, the phase method provides the ability to regulate the load angle with guaranteed maintenance of the motor in synchronism in transient modes. All this makes double-fed induction motors promising for use in installations with increased requirements for accuracy and reliability, including in radio engineering systems.

Pages: 14-21
For citation

Chumachenko A.A., Bisov A.A., Bronov S.A., Nikulin N.A., Krivova D.D., Avlasko P.V. Multi-channel control of the spatial guidance device of radio engineering systems. Achievements of modern radioelectronics. 2025. V. 79. № 2. P. 14–21. DOI: https://doi.org/10.18127/ j20700784-202502-02 [in Russian]

References
  1. German-Galkin S.G., Gavrilov R.S., Mustafaev Yu.N. Strukturnye i imitacionnye modeli v model'no-orientirovannom proektirovanii ventil'nogo elektroprivoda dlya OPU. Mekhatronika, avtomatizaciya i upravlenie. 2017. № 1 (18). S. 56–63. [in Russian]
  2. Noskova E.E., Marareskul A.V. Sposoby upravleniya induktornymi dvigatelyami dvojnogo pitaniya. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva. 2007. Vyp. 2 (15). S. 82–87. [in Russian]
  3. Bronov S.A., Bisov A.A. Sistema modelirovaniya dinamicheskih ob"ektov s peremennoj strukturoj. Uspekhi sovremennoj radioelektroniki. 2016. № 11. S. 269–272. [in Russian]
  4. Bronov S.A., Nikulin N.A., Avlasko P.V., Volkov D.V., Stepanova E.A., Krivova D.D., Bisov A.A., Pichkovskiy A.V., Zaznobina N.B., Lomova N.A. Doubly-fed inductor motor as the element of automatic control system [Elektronnyj resurs]. IOP Conf. Series: Materials Science and Engineering.2019. № 537. P. 1–5. URL: https://iopscience.iop.org/article/10.1088/1757-899X/537/3/032096. DOI: 10.1088/1757-899X/537/3/032096.
  5. Mishchenko D.D. Modelirovanie slozhnyh dinamicheskih ob"ektov. Vestnik KrasGAU. 2014. № 3(90). S. 35–40. [in Russian]
  6. Zhulovyan V.V. Elektricheskie mashiny: elektromekhanicheskoe preobrazovanie energii. M.: YUrajt. 2018. [in Russian]
  7. Titovskii S.N., Titovskaya T.S., Titovskaya N.V. Pulse voltage stabilizer controlled by a microcontroller. IOP Conf. Series: Materials Science and Engineering. 2020. № 919 (062043). 6 s. DOI:10.1088/1757-899X/919/6/062043.
  8. Titovskii S.N., Titovskaya N.V., Titovskaya T.S. Influence of the digital data representation error in the linear control contour of a pulse voltage stabilizer. Journal of Physics: Conference Series: APITECH-2019. 2019. № 1399 (022051). 5 p. DOI:10.1088/1742-6596/1399/2/022051.
  9. Nepomnyashchij O.V., Krasnobaev Yu.V., Titovskij S.N., Habarov V.A. Mikroelektronnye ustrojstva upravleniya silovymi energopreobrazuyushchimi modulyami sistem elektropitaniya perspektivnyh kosmicheskih apparatov. Journal of Siberian Federal University. Engineering & Technologies. 2012. № 2 (5). S. 162–168. [in Russian]
  10. Bruslinovskij B.V., Evtodij A.A. Snizhenie shuma ventil'no-induktornogo dvigatelya pri shirotno-impul'snom upravlenii so sluchajnym izmeneniem parametrov. Izvestiya SPbGETU «LETI». 2015. № 8. S. 38–46. [in Russian]
  11. Shevchenko A.F., Chestyunina T.V., Toporkov D.M., Vyal'cev G.B. Dvigateli s elektromagnitnoj redukciej chastoty vrashcheniya s ventil'nym podmagnichivaniem. Doklady AN VSH RF. 2021. № 4 (53). S. 49–61. [in Russian]
Date of receipt: 26.12.2024
Approved after review: 23.12.2024
Accepted for publication: 15.01.2025