S.Sh. Rekhviashvili1, O.S. Olkhovik2
1,2 Institute of Applied Mathematics and Automation KBSC RAS (Nalchik, Russia)
1 rsergo@mail.ru
Percolation systems have found diverse applications in electronics, particularly in the development of conductive materials, energy storage and conversion devices, semiconductor components, and sensor technologies. They also play a vital role in fundamental research aimed at understanding electrical conductivity and the magnetic properties of condensed matter.
This article presents a simulation of the electrical behavior of a percolation cluster, taking into account phenomena such as electrical breakdown, resistance, and capacitance. The goal is to characterize a composite material consisting of a dielectric matrix embedded with nanoscale metallic particles.
Within the small-signal approximation, the system’s complex frequency response is evaluated. Under an alternating input signal, the percolation cluster functions as a high-pass filter. In the large-signal regime, the system may exhibit memory effects due to dynamic hysteresis and memristive behavior. In this operational mode, the percolation cluster can be regarded as a fundamental building block for the development of a new class of phase logic devices.
The simulation models were implemented using the TINA-TI circuit simulation software. The results obtained may be applied to the design of logic gates that leverage the memristive properties of percolation clusters, which is especially promising for creating energy- and memory-efficient logic circuits.
Percolation structures also show potential as components in amplitude-sensitive high-pass filters, useful in adaptive or self-learning signal processing systems. The findings suggest that the proposed modeling approach can assist in selecting the parameters of composite materials with tailored electrical properties, for use in sensors, antennas, or microwave components. Moreover, percolation clusters can be integrated into nonlinear electronic elements (e.g., varistors or voltage limiters), accounting for breakdown and hysteresis effects observed in the model.
Rekhviashvili S.Sh., Olkhovik O.S. Modeling of electrical characteristics of a percolation cluster. Achievements of modern radioelectronics. 2025. V. 79. № 11. P. 70–80. DOI: https://doi.org/10.18127/j20700784-202511-08 [in Russian]
- Tarasevich Yu.Yu. Perkolyaciya: teoriya, prilozheniya, algoritmy: M.: Editorial URSS. 2002. [in Russian].
- Gijon E., Mitesku K.D., Yulen Zh.-P., Ru S. Fraktaly i perkolyaciya v poristoj srede. UFN. 1991. T. 161. № 10. S. 121–128 [in Russian].
- Zhmurikov E.I. K voprosu o perkolyacionnoj provodimosti geterogennyh mezoskopicheskih sistem. Preprint. IYaF 2005-18. Novosibirsk. 2005. [in Russian].
- Novikov V.V., Wojciechowski K.W. Chastotnye zavisimosti dielektricheskih svojstv kompozitov tipa metall–dielektrik. FTT. 2002. T. 44. № 11. S. 1963–1969 [in Russian].
- Moskalev P.V. Analiz struktury perkolyacionnogo klastera. ZhTF. 2009. T. 79. № 6. S. 1–7 [in Russian].
- Moskalev P.V., Grebennikov K.V., Shitov V.V. Statisticheskoe ocenivanie harakteristik perkolyacionnogo klastera. Vestnik VGU. Seriya: Sistemnyj analiz i informacionnye tekhnologii. 2011. № 1. S. 29–35 [in Russian].
- Smirnov B.M. Metallicheskie nanostruktury: ot klasterov k nanokatalizu i sensoram. UFN. 2017. T. 187. № 12. S. 1329–1364 [in Russian].
- Herega A. Some applications of the percolation theory: brief review of the century beginning. Journal of Materials Science and Engineering A. 2015. V. 5. № 11–12. P. 409–414.
- Gerega A., Kryvchenko Yu. Model' samoorganizacii blizhajshej okrestnosti elementov perkolyacionnyh klasterov: zavisimost' svojstv ot istorii formirovaniya. Fizicheskaya mezomekhanika. 2019. T. 22. № 4. S. 83–94 [in Russian].
- Irzhak V.I. Porog perkolyacii v polimernyh nanokompozitah. Kolloidnyj zhurnal. 2021. T. 83. № 1. S. 51–56 [in Russian].
- Clerc J.P., Giraud G., Laugier J.M., Luck J.M. Electrical properties of percolation clusters: exact results on a deterministic fractal. J. Phys. A: Math. Gen. 1985. V. 18. P. 2565–2583.
- Clerc J.P., Giraud G., Laugier J.M., Luck J.M. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv. Phys. 1990. V. 39. № 3. P. 191–309.
- Shimoni N., Azulay D., Balberg I., Millo O. Voltage induced electrical connectivity on a percolation cluster. Phys. Stat. Sol (b). 2002. V. 230. № 1. P. 143–150.
- Dovzhenko A.Yu., Bunin V.A. Vliyanie formy i razmera chastic elektroprovodyashchej fazy na obrazovanie perkolyacionnogo klastera v keramicheskoj kompozicii. ZhTF. 2003. T. 73. № 8. S. 123–125 [in Russian].
- Gallyamov S.R., Mel'chukov S.A. Perkolyacionnaya model' provodimosti dvuhfaznoj reshetki: teoriya i komp'yuternyj eksperiment. Vestnik Udmurtskogo un-ta. Ser.: Matem. Mekh. Komp'yut. nauki. 2010. № 4. S. 112–122 [in Russian].
- Katunin A., Krukiewicz K. Electrical percolation in composites of conducting polymers and dielectrics. J. Polym. Eng. 2015. № 8. P. 731–741.
- Kumar A., Vidhyadhiraja N.S., Kulkarni G.U. Current distribution in conducting nanowire networks. J. Appl. Phys. 2017. V. 122. P. 045101.
- Mingzhi Wang, Yushi Liu, Beimeng Qi, Abir Al-Tabbaa, Wei Wang. Percolation and conductivity development of the rod networks within randomly packed porous media. Composites Part B. 2020. V. 187. P. 107837.
- Rösch A.G., Giunta F., Mallick Md.M., Franke L., Gall A., Aghassi-Hagmann J., Schmalian J., Lemmer U. Improved electrical, thermal, and thermoelectric properties through sample-to-sample fluctuations in near-percolation threshold composite materials. Adv. Theory Simul. 2021. V. 4. № 6. P. 2000284 (1–8).
- Lebovka N.I., Manna S.S., Tarafdar S., Teslenko N. Percolation in models of thin film depositions. Phys. Rev. E. 2002. V. 66.
P. 066134. - Sang Won Bae, Kihyun Kim, Yoon Deok Han, Sung Hwan Kim, Jinsoo Joo, Ji Hoon Choi, Cheol Jin Lee. Percolation threshold related to field-effect transistors using thin multi-walled carbon nanotubes composites. Synth. Met. 2009. V. 159. № 19–20. P. 2034–2037.
- Bondar' N.V. Obrazovanie klasterov i perkolyacionnogo poroga v dvuhfaznoj sisteme so sluchajnym raspredeleniem kvantovyh tochek ZnSe. Fizika nizkih temperatur. 2009. T. 35. № 3. S. 307–314 [in Russian].
- Bondar' N.V., Brodin M.S. Fotolyuminescenciya i energiya eksitonov v perkolyacionnom klastere kvantovyh tochek ZnSe kak fraktal'nom ob"ekte. FTP. 2012. T. 46. № 5. S. 644–648 [in Russian].
- Moshnikov V.A., Nalimova S.S., Seleznev B.I. Gazochuvstvitel'nye sloi na osnove fraktal'no-perkolyacionnyh struktur. FTP. 2014. T. 48. № 11. S. 1535–1539 [in Russian].
- Chuanfei Guo, Zhifeng Ren. Flexible transparent conductors based on metal nanowire networks. Materials Today. 2014. V. 18. № 3. P. 143–154.
- Pant M., Towsley D., Englund D., Guh S. Percolation thresholds for photonic quantum computing. Nat. Commun. 2019. V. 10. P. 1070.
- Peipei Su, Haitao Zhang, Lipeng Yang, Chunxian Xing, Shanshan Pan, Wei Lu, Suojiang Zhang. Effects of conductive additives on the percolation networks and rheological properties of LiMn0.7Fe0.3PO4 suspensions for lithium slurry battery. J. Chem. Eng. 2022. V. 433. Pt. 2. P. 133203.
- Ol'hovik O.S. Razrabotka algoritma i modelirovanie processa perkolyacii na dvumernoj kvadratnoj reshetke. Nelinejnyj mir. 2019. T. 17. № 5. S. 54–59 [in Russian].
- Asadi F. Electric and electronic circuit simulation using TINA-TI. Denmark, Gistrup: River Publishers, 2022. 456 p.
- Simmons J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963. V. 34. № 6. P. 1793–1803.

