350 rub
Journal Achievements of Modern Radioelectronics №10 for 2025 г.
Article in number:
Universal multifunctional autonomous navigation system of radar operating principle
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202510-02
UDC: 629.054
Authors:

A.M. Shkapyak1, S.P. Gulevich2, A.S. Komogortsev3, V.V. Mikhailov4, A.N. Korotkikh5, T.S. Kostina6

1–5 JSC «Rybinsk Instrument Engineering Plant» (Rybinsk, Russia)

6 JSC «Ural Civil Aviation Plant» (Yekaterinburg, Russia)

1 rrussia@gmail.com, 2 s.p.gulevich@mail.ru, 3 andreykomogortsev@yandex.ru, 4 vmikhailov@rambler.ru, 5 korotkix02@rambler.ru

Abstract:

Technical solutions for the creation of fundamentally new universal multifunctional autonomous navigation system of radar operating principle are proposed.

Currently, navigation systems of unmanned aerial vehicles (UAV) are based on global navigation satellite systems (GNSS) receivers, combined with a block of inertial sensors of spatial orientation. GNSS are based on the use of coordinated by motion and radiation signals of Earth artificial navigation satellites network. GNSS provide continuous and almost immediate determination of the position (location) and speed of the UAV almost over the globe. Such a system provides a fairly accurate determination of the UAV position and parameters of its movement subject to a good GNSS signal. At the same time, the GNSS is a radio-technical navigation system and, like any such system, is subject to the influence of external radio interference, both natural and artificial.

One of the ways to solve the problem of performing UAV flights in conditions of natural and artificial interference, when information from external sources is not available to estimate the position of the UAV, is the use of path reckoning method.

The most important component of the autonomous navigation system implementing the course-Doppler mode of path calculation is the Doppler velocity sensor and hover drift.

The R&D of Doppler velocity sensor & hover drift for the UAV (small size and weight) is a complex scientific, technical and design task, the implementation of which became possible due to the use of modern technical (design, schematic, technological, etc.) solutions.

Pages: 7-15
For citation

Shkapyak A.M., Gulevich S.P., Komogortsev A.S., Mikhailov V.V., Korotkikh A.N., Kostina T.S.  Universal multifunctional autonomous navigation system of radar operating principle. Achievements of modern radioelectronics. 2025. V. 79. № 10. P. 7–15. DOI: https://doi.org/10.18127/j20700784-202510-02 [in Russian]

References
  1. Emel'yantsev G.I., Stepanov A.P. Integrirovannye inertsial'no-sputnikovye sistemy orientatsii i navigatsii. Pod. red. akad. RAN V.G. Peshekhonova. SPb: GNTs RF AO «Kontsern «TsNII «Elektropribor». 2016. [in Russian]
  2. Warner J.S., Johnston R.G. GPS Spoofing Countermeasures. CPP Vulnerability Assessment Team, Los Alamos National Laboratory, Los Alamos, New Mexico. 2003.
  3. Rendal U.B., Timoti U.M. Malye bespilotnye letatel'nye apparaty: teoriya i praktika. M.: Tekhnosfera. 2015. [in Russian]
  4. Dzhandzhgava G.I., Subbotin V.Yu., Gulevich S.P., Chernov V.G. Mnogofunktsional'naya avtonomnaya navigatsionnaya sistema radiolokatsionnogo printsipa deystviya. M.: Problemy bezopasnosti poletov. 2019. № 12. [in Russian]
  5. Dzhandzhgava G.I., Subbotin V.Yu., Gulevich S.P., Chernov V.G, Evkharitskiy S.A. Mnogofunktsional'naya sistema putevykh parametrov radiolokatsionnogo printsipa deystviya letatel'nykh apparatov vertoletnogo tipa. M.: Radioelektronnye tekhnologii. 2020. № 3. [in Russian]
  6. Izdelie D-055MS. Tekhniko-ekonomicheskoe obosnovanie. Rybinsk, Yaroslavskaya obl.: AO «RZP». 2023. [in Russian]
  7. Kolchinskiy V.E., Mandurovskiy I.A., Konstantinovskiy M.I. Avtonomnye dopplerovskie ustroystva i sistemy navigatsii letatel'nykh apparatov. Pod. red. V.E. Kolchinskogo. M.: Sov. radio. 1975. [in Russian]
  8. Len'shan A.V., Tikhomirov N.M., Popov S.A. Bortovye radioelektronnye sistemy. Osnovy postroeniya. Voronezh: Nauchnaya kniga. 2021. [in Russian]
  9. Chistyakov N.I., Sidorov V.M. Radiopriemnye ustroystva. M.: Svyaz'. 1974. [in Russian]
  10. Finkel'shteyn M.I. Osnovy radiolokatsii. M.: Sov. radio. 1973. [in Russian]
  11. Kocherzhevskiy G.N. Antenno-fidernye ustroystva. M.: Svyaz'. 1972. [in Russian]
  12. Kuk Ch., Bernfel'd M. Radiolokatsionnye signaly. Per. s angliyskogo pod red. V.S. Kel'zona. M.: Sov. radio. 1971. [in Russian]
  13. Rausher K., Yanesen F., Minikhol'd R. Osnovy spektral'nogo analiza. Per. s angl. S.M. Smol'skogo; pod red. Yu.A. Grebenko. M.: Navigator. 2021. [in Russian]
  14. Krokhin V.V. Elementy radiopriemnykh ustroystv sverkhvysokikh chastot. M.: Sov. radio. 1964. [in Russian]
  15. Skolnik M.S. Vvedenie v tekhniku radiolokatsionnykh system. Per. s angl. L.K. Gorokhova, F.S. Soloveychika; pod red. K.N. Trofimova. M.: Mir. 1965. [in Russian]
  16. Flerov A.G. Timofeev V.T. Doplerovskie ustroystva i sistemy navigatsii. M.: Transport. 1987. [in Russian]
  17. Toybert P. Otsenka tochnosti rezul'tatov izmereniy. Per. s nemetskogo V.N. Khramenkova; pod red. E.I. Sycheva. M.: Energoavtomizdat. 1988. [in Russian]
  18. Zarubezhnaya radioelektronika. Ezhemesyachnyy nauchno-tekhnicheskiy zhurnal. M: Sov. radio. 1964. № 1. [in Russian]
  19. Kharin E.G., Tsvetkov P.M., Volkov V.K. i dr. Letnye ispytaniya sistem pilotazhno-navigatsionnogo oborudovaniya. M.: Mashinostroenie. 1986. [in Russian]
  20. Otchet o provedenii letnykh issledovaniy opytnogo obraztsa doplerovskogo izmeritelya skorosti i ugla snosa D-055MS IBTS.462524.001-01. Rybinsk, Yaroslavskaya obl.: AO «RZP». 2023. [in Russian]
Date of receipt: 10.09.2025
Approved after review: 23.09.2025
Accepted for publication: 30.09.2025