350 rub
Journal Achievements of Modern Radioelectronics №3 for 2024 г.
Article in number:
Assessment of the increase in the proportion of pulses received by an RF spectrum management system in a complex signal environment when using delay devices
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202403-02
UDC: 621.396.62
Authors:

A.S. Lukiyanov1, A.S. Podstrigaev2

1,2 St. Petersburg State Electrotechnical University «LETI» (St. Petersburg, Russia)

1 alexanderlukiyanov@gmail.com, 2 ap0d@ya.ru

Abstract:

The RF spectrum management system detects radio signals in a wide frequency range, analyzes their parameters, and locates radio emission sources. A large RF spectrum management system includes radio surveillance and phase direction-finding systems. The radio surveillance system receives signals without searching by direction and frequency in a broad viewing sector and frequency band. The narrow-band phase direction-finding system refines the signal parameters at frequencies the radio surveillance system selects as a priority.

Often, the operation of the RF spectrum management system is carried out in areas with a large number of simultaneously operating radio emission sources (for example, in megacities, on the territory of large naval bases and airports, transport hubs, and industrial facilities with a high degree of automation). Under such conditions, a complex signal environment is formed for the RF spectrum management system. Such an environment is characterized primarily by a high probability of pulse overlap in time. At the same time, for a radio surveillance system, there is always a maximum permissible number of pulses superimposed at the input; when exceeded, pulse gaps and errors in determining their time-frequency parameters occur.

Another attribute of a complex signal environment is signals with a frequency-hopping spread spectrum, which is actively used, for example, in telecommunication systems. During deter-mining parameters in the radio surveillance system and tuning the phase direction-finding system, pulses may end at the frequency of interest. Therefore, in the absence of another pulse at the same frequency, the radio source will not be direction found.

The adverse effects of the radio surveillance system and the phase-direction finding system are considered to be reducing the proportion of pulses received by the RF spectrum management system when operating in a complex signal environment. Accordingly, the probability of correct recognition of radio emission sources during secondary processing is reduced. However, this negative effect can be eliminated by using specialized delay devices based on RF photonics elements in the RF spectrum management system.

A device with an adjustable delay ensures that the radio surveillance system receives pulses superimposed in time. Since the duration of the received pulse is unknown, this device provides adaptive adjustment of the delay time. A device with a fixed delay stores the input pulse in the phase direction-finding system for the duration of processing in the radio surveillance system and tuning the phase direction-finding system. This allows the radio surveillance system to take a bearing on each pulse detected.

In this regard, the work aims to assess the increase in the proportion of pulses received by the RF spectrum management system in a complex signal environment by using the proposed delay devices.

To achieve this goal, a mathematical apparatus has been developed to estimate the proportion of pulses received by the RF spectrum management system. In the process of developing the mathematical apparatus, the following parameters were taken into account: the probability of superimposing in time the number of pulses not exceeding the maximum permissible value; the proportion of pulses taken by the phase direction finding system after receiving target designation from the radio surveillance system; probability of receiving pulses during the period between calibrations of the phase direction-finding system; probability of detecting an input pulse by an energy detector.

Using the proposed mathematical apparatus, we estimated the proportion of pulses received by the RF spectrum management system without delay devices and using delay devices in the radio surveillance and phase direction-finding systems. The calculation results show that the use of delay devices in a signal environment formed by a significant number of radio emission sources (N=28…140) provides an increase in the proportion of received pulses to 0,28…0,3 (with S=1…5). With increasing duty cycle S, the number of radio emission sources N, for which the specified positive effect is ensured, increases. Also, up to 2,5 times (with S=1…5 the number of radio emission sources N increases, for which the radio monitoring complex in a complex signal environment is effective according to the criterion proportion of received pulses more or equal to 0,9.

The results obtained can be used when designing an RF spectrum management system to assess the feasibility and effectiveness of using delay devices in a radio surveillance and a phase direction-finding systems.

The resulting mathematical apparatus can be used to estimate the proportion of pulses received in a complex signal environment by an RF spectrum management system, which includes a radio surveillance and a phase direction-finding systems.

Pages: 13-21
For citation

Lukiyanov A.S., Podstrigaev A.S. Assessment of the increase in the proportion of pulses received by an RF spectrum management system in a complex signal environment when using delay devices. Achievements of modern radioelectronics. 2024. V. 78. № 3. P. 13–21. DOI: https://doi.org/10.18127/j20700784-202403-02 [in Russian]

References
  1. Bogdanovskiy S.V., Simonov A.N., Teslevich S.F., Shaydulin Z.F. Prostranstvenno-polyarizatsionnaya obrabotka radiosignalov pri pelengovanii istochnikov radioizlucheniya s bespilotnogo letatel'nogo apparata. Naukoemkie tekhnologii. 2015. T. 16. № 12. S. 50–55. [in Russian]
  2. Eremeev I.Yu., Zhilenkov M.G., Zamarin A.I., Trunov V.N. Etapy strukturnogo analiza radiosignalov pri radiomonitoringe sistem svyazi so skachkoobraznym izmeneniem nesushchey chastoty. Voprosy radioelektroniki. 2009. T. 1. № 2. S. 71–80. [in Russian]
  3. Likhachev V.P., Likhacheva N.V. Obosnovanie trebovaniy k vzaimnomu raspolozheniyu sredstv radiotekhnicheskogo monitoringa i pomekh. Naukoemkie tekhnologii. 2010. T. 11. № 9. S. 51–54. [in Russian]
  4. Chebotar' I.V., Laptev I.V., Pechurin V.V., Baldychev M.T., Pivkin I.G. Opredelenie koordinat istochnika impul'snykh radiosignalov na osnove raznostno-dal'nomernykh izmereniy v usloviyakh primeneniya odnogo vozdushnogo priemnogo punkta. Elektromagnitnye volny i elektronnye sistemy. 2022. T. 27. № 3. S. 48–51. DOI: 10.18127/j15604128-201908-05. [in Russian]
  5. Dyatlov A.P., Kul'bikayan B.Kh. Korrelyatsionnaya obrabotka shirokopolosnykh signalov v avtomatizirovannykh kompleksakh radiomonitoringa. M.: Goryachaya liniya – Telekom. 2017. [in Russian]
  6. Dyatlov P.A. Razrabotka i issledovanie kombinirovannogo pelengatora na osnove lineynoy fazirovannoy antennoy reshetki: diss. … kand. tekhn. nauk. Taganrog. 1999. [in Russian]
  7. Podstrigaev A.S., Smolyakov A.V., Maslov I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika. 2020. № 23 (5). S. 37–45. [in Russian]
  8. Korotkov V.F., Zyryanov R.S. Razdelenie impul'snykh posledovatel'nostey v smeshannom potoke signalov. Radioelektronika. 2017. № 3. S. 5−10. [in Russian]
  9. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Vybor priemnika dlya shirokopolosnogo analiza signal'noy obstanovki na osnove otsenki ee slozhnosti. Radiotekhnika. 2022. T. 86. № 1. S. 143−153. DOI: https://doi.org/10.18127/j00338486-202201-19. [in Russian]
  10. Dvornikov S.S., Dvornikov S.V., Leonov D.M., Makhfud M.G. Effektivnost' funktsionirovaniya lokal'nykh radiosetey v slozhnoy radioelektronnoy obstanovke. Informatsiya i kosmos. 2023. № 1. S. 29−34. [in Russian]
  11. Grigoryan A.K. Skrytnaya perestroyka nesushchey chastoty pod prikrytiem pomekhi. XLVII Gagarinskie chteniya 2021: Sb. tezisov rabot Mezhdunar. molodezhnoy nauch. konf. 2021. [in Russian]
  12. Gorshkov D.V., Meshcheryakov Yu.Yu., Tokarev A.B. Ekspress-test nalichiya v diapazone chastot signalov s PPRCh pri panoramnoy obrabotke dannykh sistemoy radiomonitoringa. Vestnik Voronezhskogo instituta MVD Rossii. 2018. № 2. S. 124–132. [in Russian]
  13. Patent 2716283 C2 RF, G02B 6/28, H01P 9/00. Sposob regulirovaniya zaderzhki SVCh-signala i realizuyushchaya ego liniya zaderzhki. Podstrigaev A.S., Galichina A.A., Lukiyanov A.S. Zayavl. 19.07.2019. Opubl. 11.03.2020. Byul. № 8. [in Russian]
  14. Kondakov D.V., Ivanov S.I., Lavrov A.P. A Broadband Analog Fiber-Optic Line with Recirculating Memory Loop for Variable Microwave Signal Delay. International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics. 2022. V. 268. P. 487–496.
  15. Belkin M.E., Fofanov D.A., Kartyshev B.A., Sigov A.S. Studying Optimal Configuration of Microwave-Photonics Long-Term Time Delay Circuit Based on Fiber-Optics Recirculating Loop. IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). 2020. P. 1–4.
  16. Podstrigaev A.S. Povyshenie effektivnosti matrichnogo priemnika v slozhnoy signal'noy obstanovke na osnove optovolokonnoy linii zaderzhki. Trudy MAI. 2021. № 116. [in Russian]
  17. Podstrigaev A.S., Lukiyanov A.S. The operating algorithm of the delay device processing time overlapped pulses in a matrix receiver. T–Comm. 2022. V. 16. № 3. P. 36–42.
  18. Patent RU 2765484 C2. Sposob pelengovaniya i realizuyushchee ego ustroystvo. Podstrigaev A.S. Zayavl. 13.04.2021. Opubl. 31.01.2022. Byul. № 4. [in Russian]
  19. Podstrigaev A.S., Smolyakov A.V., Lukiyanov A.S. Vozmozhnost' ispol'zovaniya optiko-elektronnogo trakta v fazovom radiopelengatore SVCh-diapazona v usloviyakh dinamicheskikh temperaturnykh vozdeystviy. Uspekhi sovremennoy radioelektroniki. 2022. T. 76. № 9. S. 55–65. DOI: https://doi.org/10.18127/j20700784-202209-03. [in Russian]
  20. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Programmno-opredelyaemye sredstva shirokopolosnogo analiza signalov na osnove tekhnologii subdiskretizatsii. SPb.: Izd-vo SPbGETU «LETI». 2021. [in Russian]
  21. Self A.G., Smith B.G. Intercept time and its prediction. IEE Proceedings F – Communications, Radar and Signal Processing. 1985. V. 132. № 4. P. 215–220.
  22. Borisov V.I., Zinchuk V.M., Limarev A.E., Mukhin N.P., Shestopalov V.I. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov metodom psevdosluchaynoy perestroyki rabochey chastoty. M.: Radio i svyaz'. 2000. [in Russian]
  23. Gorbunova A.A. Razrabotka algoritma polucheniya tochechnogo portreta slozhnoy tseli po kompleksnomu radiolokatsionnomu izobrazheniyu. Trudy MAI. 2011. № 45. [in Russian]
  24. Kazachkov E.A., Matyugin S.N., Popov I.V., Sharonov V.V. Obnaruzhenie i klassifikatsiya malorazmernykh ob"ektov na izobrazheniyakh, poluchennykh radiolokatsionnymi stantsiyami s sintezirovannoy aperturoy. Vestnik Kontserna VKO «Almaz – Antey». 2018. № 1. S. 93–99. [in Russian]
  25. Adzhemov S.S., Tereshonok M.V., Chirov D.S. Neyrosetevoy metod raspoznavaniya vidov modulyatsii radiosignalov s ispol'zovaniem kumulyantov vysokogo poryadka. T Comm. 2012. V. 16. № 9. P. 9–12. [in Russian]
  26. Chirov D.S., Stetsyuk A.N. Neyrosetevoy metod identifikatsii istochnikov radioizlucheniya kompleksom radiomonitoringa vozdushnogo bazirovaniya. Fundamental'nye problemy radioelektronnogo priborostroeniya. 2017. T. 17. № 4. S. 950–953. [in Russian]
  27. Podstrigaev A.S. Otsenka urovnya slozhnosti signal'noy obstanovki dlya ispol'zovaniya mnogokanal'nogo priemnika s subdiskretizatsiey. Trudy MAI. 2023. № 129. [in Russian]
  28. Ge Z., Sun X., Ren W., Chen W., Xu G. Improved algorithm of radar pulse repetition interval deinterleaving based on pulse correlation. IEEE Access. 2019. V. 7. P. 30126–30134.
  29. Korotkov A.V. Chastotno-vremennoy analiz signalov malozametnykh radiolokatsionnykh stantsiy: diss. … kand. tekhn. nauk. SPbGETU «LETI». 2015. [in Russian]
Date of receipt: 01.02.2024
Approved after review: 16.02.2024
Accepted for publication: 28.02.2024