350 rub
Journal Achievements of Modern Radioelectronics №11 for 2024 г.
Article in number:
A method for studying the robustness of one class of nonlinear control systems
Type of article: scientific article
DOI: 10.18127/j20700784-202411-06
UDC: 681.511.46
Authors:

Yu.P. Korniushin1, A.V. Maksimov2, A.V. Finoshin3, V.O. Miloserdov4

1–4 Moscow state technical University n. a. N. Uh. Bauman (national research University) (Kaluga, Russia)

Abstract:

The problem of studying the robust properties of nonlinear tracking systems with regulators operating at sliding intervals using the apparatus of matrix operators is considered. The problem is caused by the fact that it was traditionally believed that optimal systems synthesized according to the quadratic quality criterion are sensitive to the parametric uncertainty of the object model. This was determined by the fact that «once» found from the solution of the Riccati equation, the parameters of the regulator are unchanged. And, the built system is not «rough», and sometimes they lose not only optimality, but also efficiency. Systems are considered when a priori information about an object is not known exactly, but only with some confidence, given by the intervals of belonging of its parameters to a certain interval.

Purpose. To develop a method and algorithm for the synthesis of optimal regulators that ensure robust properties of the system in relation to the parametric uncertainty of the control object. The only requirement is to belong to the mathematical model of the control object, to have nonlinear characteristics of an analytical type, or reduced to them.

A new synthesis method is proposed that allows the construction of regulators that deliver robust properties to nonlinear control objects with the above properties with respect to the parametric uncertainty of the object. The matrix operator apparatus is used, which allows parameterizing the synthesis task. There are no restrictions on controls. Nevertheless, with simulated constraints on the control in magnitude, the robust properties of the control system were preserved.

The proposed algorithm for the synthesis of regulators providing robust properties to nonlinear control systems in relation to their mathematical models can be used in the design of electromechanical complexes and systems of various functional purposes.

Pages: 50-59
For citation

Korniushin Yu.P., Maksimov A.V., Finoshin A.V., Miloserdov V.O. A method for studying the robustness of one class of nonlinear control systems. Achievements of modern radioelectronics. 2024. V. 78. № 11. P. 50–59. DOI: https://doi.org/10.18127/j20700784-202411-06 [in Russian]

References
  1. Kornyushin Yu.P. Sintez robastnyh regulyatorov dlya nelinejnyh sledyashchih sistem. Naukoemkie tekhnologii. 2020. T. 21. № 6. S. 63–69. DOI: 10.18127//j19998465-202006-10 [in Russian].
  2. Polyak B.T., ShCherbakov P.S. Robastnaya ustojchivost' i upravlenie. M.: Nauka. 2002. 273 s. [in Russian].
  3. Feng Lin. Robust Control Design: An Optimal Control Approach. 1997. URL: http://www.ece.eng.wayne.edu/flin (data obrashcheniya: 17.04.2024).
  4. Krut'ko P.D. Dekompoziruyushchie algoritmy robastno ustojchivyh nelinejnyh mnogosvyaznyh upravlyaemyh sistem. Izv. RAN. Teoriya i sistemy upravleniya. 2005. № 1. S. 28–45.
  5. Myshlyaev Yu.I., Minkin V.O., Finoshin A.V. Upravlenie kolebaniyami mekhanicheskoj sistemy s privodom v usloviyah parametricheskoj neopredelennosti. Avtomatizaciya. Sovremennye tekhnologii. 2020. T. 74. № 7. S. 339–344 [in Russian].
  6. Kornyushin Yu.P., Mel'nikov D.V., Egupov N.D., Kornyushin P.Yu. Issledovanie i raschet parametrov elementov sistemy regulirovaniya chastoty vrashcheniya rotora turbiny s uchetom parametricheskoj neopredelennosti matematicheskoj modeli. Vestnik MGTU im. N.E. Baumana. Seriya: Estestvennye nauki. 2014. № 1. S. 78–93. URL: http://vestniken.bmstu.ru…hsim/hidden/181.html (data obrashcheniya: 17.04.2024) [in Russian].
  7. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravleniya: Uchebnik v 5-i tomah; Izd. 2-e, pererab. i dop. T. 4: Teoriya optimizacii sistem avtomaticheskogo upravleniya. Pod red. K.A. Pupkova i N.D. Egupova. M.: Izd-vo MGTU im. N.E. Baumana, 2004. 744 s. [in Russian].
  8. Krasovskij N.N. Teoriya upravleniya dvizheniem. Linejnye sistemy. M.: Nauka. 1968. 476 s. [in Russian].
  9. Finoshin A.V., Dolgov J.A. Synthesis of a Generative Model with the Reference Signal. Journal of Mathematical Sciences. 2023. № 269. P. 796–802. DOI: 10.1007/s10958-023-06317-0
  10. Kornyushin Yu.P., Mel'nikov D.V, Zaharov S.I. Sintez regulyatorov sledyashchih sistem dlya nelinejnyh ob"ektov s ispol'zovaniem metodov nelinejnogo programmirovaniya i matrichnyh operatorov. Trudy MGTU. 2006. № 589. S. 30–36 [in Russian].
  11. Krasnoshchechenko V.I., Krishchenko A.P. Nelinejnye sistemy: geometricheskie metody analiza i sinteza. M.: Izd-vo MGTU im. N. E. Baumana. 2005. 519 s. [in Russian].
  12. Kornyushin Yu.P. Sintez optimal'nyh programmnyh upravlenij s ogranicheniem na upravlenie dlya nelinejnyh ob"ektov s ispol'zovaniem metoda matrichnyh operatorov. Nelinejnyj mir. 2021. T. 19. № 4. S. 21–31. DOI: 10.18127/j20700970-202104-03 [in Russian].
  13. Kornyushin Yu.P., Klimanova E.V., Maksimov A.V. Metod postroeniya poverhnostej chastotnyh harakteristik kompleksnoznachnyh peredatochnyh funkcij sistem upravleniya. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2021. T. 19. № 5. S. 58−66. DOI: https://doi.org/10.18127/j20700814-202105-05 [in Russian].
  14. Brajson A., Ho Yu-Shi. Prikladnaya teoriya optimal'nogo upravleniya. M.: Mir. 1972. 544 s. [in Russian].
Date of receipt: 24.09.2024
Approved after review: 17.10.2024
Accepted for publication: 31.10.2024