350 rub
Journal Achievements of Modern Radioelectronics №10 for 2024 г.
Article in number:
Comparison of the work of a chess manipulator and its digital counterpart
Type of article: scientific article
DOI: 10.18127/j20700784-202410-05
UDC: 621.01
Authors:

M.D. Russkih1, L.N. Safina2, B.A. Timershin3, D.E. Chikrin4, I.G. Galiullin5, P.A. Kokunin6, E.S. Gustov7

1-7 Kazan (Volga Region) Federal University (Kazan, Russia)

1 5021702001@mail.ru, 2 safinalilia406@gmail.com, 3 btimershin99@gmail.com, 4 dmitry.kfu@ya.ru,
5 isgaliullin@gmail.com, 6 pkokunin@mail.ru, 7 jegorustow@gmail.com

Abstract:

This article presents a study on the development of a chess robot manipulator and its digital counterpart . The main purpose of the study is a comparative analysis of the functioning of a digital model and a physical prototype. The article describes in detail the process of assembling the robot, including a list of necessary components and the stages of their integration. The creation of a digital twin using the Gazebo and ROS2 software is also being considered, which allows testing in a virtual environment. The results of the experiments showed that both systems demonstrate correct operation, while significant deviations in the behavior of the double from the physical robot were not revealed. The study confirms the potential of using digital twins to optimize the development and testing of robotic systems.

Pages: 36-44
For citation

Russkih M.D., Safina L.N., Timershin B.A., Chikrin D.E., Galiullin I.G., Kokunin P.A., Gustov E.S. Comparison of the work of a chess manipulator and its digital counterpart. Achievements of modern radioelectronics. 2024. V. 78. № 10. P. 36–44. DOI: https://doi.org/10.18127/j20700784-202410-05 [in Russian]

References
  1. Kopytov D.V., Klimov K.V. Ispol'zovanie Robot Operating System (ROS) pri sozdanii robototekhnicheskikh sistem. Tezisy dokl. Vtoroy molodezh. konf. «Innovatsionnaya deyatel'nost' v nauke i tekhnike. Elektromekhanika, avtomatika i robototekhnika». Istra. 26-87 aprelya 2018 g. Istra: Nauchno-issledovatel'skiy institut elektromekhaniki. S. 57–60. [in Russian]
  2. Md. Hazrat Ali, Yernar Kuralbay, Aidos Aitmaganbet, Kamal M.A.S. Design of a 6-DOF robot manipulator for 3D printed construction. Materials Today: Proceedings. 2022. V. 49. Part 5. P. 1462–1468.
  3. Franceschi P., Mutti S., Pedrocchi N. Optimal design of robotic work-cell through hierarchical manipulability maximization. Robotics and Computer-Integrated Manufacturing. 2022. V. 78. 102401. P. 1242–1247.
  4. Iliukhin V.N., Mitkovskii K.B., Bizyanova D.A., Akopyan A.A. The Modeling of Inverse Kinematics for 5 DOF Manipulator. Procedia Engineering. 2017. V. 176. P. 498–505.
  5. Shvorin I.V., Bernik T.S. Povyshenie potrebitel'skikh svoystv opticheskikh enkoderov. Interekspo Geo-Sibir'. 2020. № 1. [in Russian]
  6. Il'in A.S., Dokhov D.O., Kalymbekov Sh. Kist' manipulyatora. Voprosy razvitiya sovremennoy nauki i tekhniki. 2021. № 5. [in Russian]
  7. Mingazova I.N. Obzor razlichnykh zakhvatov dlya promyshlennykh robotov manipulyatorov. Forum molodykh uchenykh. 2018. № 7. [in Russian]
  8. Jones D., Snider C., Nassehi A. Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology. 2020. V. 28. P. 136.
  9. Kuts V., Marvel J.A., Aksu M. Digital Twin as Industrial Robots Manipulation Validation Tool. Robotics. 2022. V. 11. № 5.
  10. Chen J., Deng H., Chai W., Xiong J., Xia Z. Manipulation Task Simulation of a Soft Pneumatic Gripper Using ROS and Gazebo. 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR), Kandima, Maldives. 2018. P. 378–383.
  11. Tao F., Zhang H., Liu A., Nee A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics. April 2019. V. 15. № 4. P. 2405–2415.
  12. Noh S., Park C., Park J. Position-Based Visual Servoing of Multiple Robotic Manipulators: Verification in Gazebo Simulator. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South). 2020. P. 843–846.
  13. Long Luo Research and analysis of manipulator control method based on deep learning. Journal of Engineering Research. 2023. P. 353–365.
  14. Levente S., Zsófia R., Attila F. Turk-2, a multi-modal chess player. International Journal of Human-Computer Studies. 2011. V. 69. № 7–8. P. 483–495.
  15. Freyja Y.Ó., Róbert B.Ó., Joseph T.F. The Axiomatic Design of Chessmate: A Chess-playing Robot. Procedia CIRP. 2016. V. 53. P. 231–236.
  16. Tsifrovye dvoyniki. Pod red. P.A. Sozinova. М.: Radiotekhnika. 2022. [in Russian]
Date of receipt: 04.09.2024
Approved after review: 19.09.2024
Accepted for publication: 24.09.2024