350 rub
Journal Achievements of Modern Radioelectronics №2 for 2023 г.
Article in number:
Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 2. Retrospective review of methods for receiving and processing signals in frequency-selective communication channels in the presence of ISI
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202302-02
UDC: 621.396.13
Authors:

I.М. Lerner1, R.R. Fayzullin2, А.N. Khairullin3, D.V. Shushpanov4, V.I. Il’in5, I.V. Ryabov6

1–3 Kazan National Research Technical University A.N. Tupolev – KAI (Kazan, Russia)

4 St. Petersburg State University of Telecommunications. prof. M.A. Bonch-Bruevich (St. Petersburg, Russia)

5 Kazan (Privolzhsky) Federal University (Kazan, Russia)

6 Volga State Technological University (Yoshkar-Ola, Russia)

 

Abstract:

The method development that provides an increase in the specific capacity is one of the central problems of radio engineering and communication theory. At presents, the key factor that limits its solution at present is ISI produced by the frequency selectivity of a real composite communication channel.

To overcome this factor, the following classes of radio engineering information transmission systems are used: 1st class, in which information is transmitted in parallel and is implemented using the technology of multiplexing with orthogonal frequency division of channels and/or with space-time coding; 2) in which the transmission is carried out in a sequential manner, and the receiving of signals is carried out under conditions of ISI, including at information transfer rates higher than the Nyquist rate.

Despite the fact that at present the first class of systems has found wide application in the field of high-speed information transmission, it has a number of significant drawbacks in relation to the second systems class. At the same time, a number of results of the practical use of first-class systems indicate that their specific capacity limitation is about 4 bit/(Hz*s), which, taking into account the existing growth in the volume of transmitted information, becomes insufficient in the near future.

A retrospective analysis of methods for receiving and processing information in radio engineering data transmission systems with serial data in frequency-selective communication channels with ISI is carried out, It is made in order to develop approaches to increasing their specific capacity of such systems in modern conditions, that is, when they use PSK-n- and APSK-N-signals.

The results of solving the first of the tasks in the article, necessary to achieve the goal, are presented, related to the study of the functional complexity of the receiver, depending on the third form of implementation of the receiving devices. The results are presented in the form of listing their advantages and disadvantages, as well as restrictions on their application in real conditions. The third form of implementation consists in the use of two classes of methods, the first of which implements the optimal technique based on the Vitebri algorithm or the Klovsky-Nikolaev method and their modifications, the second class is channel equalization.

The practical significance of the obtained results lies in the determination of strict limitations of various forms of implementation of receivers operating under conditions of ISI in frequency selective communication channels, a critical analysis of the algorithms that implement them, and the formation of recommendations for their use.

Pages: 16-33
References
  1. Lerner I.М., Fayzullin R.R., Khairullin А.N., Shushpanov D.V., Il’in V.I., Ryabov I.V. Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 1. Retrospective review of methods for receiving and processing signals in frequency-selective communication channels at data transfer rates faster than nyquist rate. Achievements of modern radioelectronics. 2023. V. 77. № 1. P. 37–50. DOI: https://doi.org/10.18127/j20700784-202301-02 [in Russian]
  2. Mordvinov A.E. Issledovanie vozmozhnosti povysheniya chastotnoy effektivnosti liniy svyazi za schet ispol'zovaniya signalov s vzaimnoy interferentsiey simvolov. Diss. … k.t.n. MEI (TU). 2008. [in Russian]
  3. Proakis J.G. Digital Communications. N.Y.: McGraw-Hill, 2001.
  4. Said A., Anderson J.B. Bandwidth-Efficient Coded Modulation with Optimized Linear Partial-Response Signals. IEEE Trans. Inform.
    Theory. 1998. V. 44. № 2. P. 701–713.
  5. Kabal P., Pasupathy S. Partial-response signaling. IEEE Transaction on Communications. 1975. V. 23. № 9. P. 921–934.
  6. Howson R. An analysis of the capabilities of polybinary data transmission. IEEE Trans, on Communication Technology. 1965. V. 13. № 3. Sept. P. 312–319.
  7. Kretzmer E.R. Generalization of a technique for binary data communication. IEEE Transactions on Communication Technology. 1966. V. 14. № 1. P. 67–68.
  8. Lender A. The duobinary technique for high-speed data transmission. IEEE Trans. Commun. Electron. 1963. V. 82. № 2. P. 214–218.
  9. Normy 19-02. Normy na shirinu polosy radiochastot i vnepolosnye izlucheniya radioperedatchikov grazhdanskogo primeneniya. M. 2002. [in Russian]
  10. Normy 19-13. Normy na shirinu polosy radiochastot i vnepolosnye izlucheniya radioperedatchikov grazhdanskogo primeneniya. M. 2013. [in Russian]
  11. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam s peremennymi parametrami. Diss. … k.t.n. L.: LEIS. 1960.
    [in Russian]
  12. Klovskiy D.D. Sistemy optimal'nogo priema v kanalakh s ekho signalami. Trudi ucheb. in-tov svyazi. 1964. V. 19. S. 19–30. [in Russian]
  13. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam. Izd. 2-e, pererab. i dop. M.: Radio i svyaz'. 1982. [in Russian]
  14. Mishin D.V. Metody povysheniya effektivnosti obrabotki signalov v kanalakh s pamyat'yu. Diss. … d.t.n. Samara. 2004. [in Russian]
  15. Klovskiy D.D., Nikolaev B.I. Inzhenernaya realizatsiya radiotekhnicheskikh skhem (v sistemakh peredachi diskretnykh soobshcheniy v usloviyakh mezhsimvol'noy interferentsii). M.: Svyaz'. 1975. [in Russian]
  16. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam. Izd. 2-e, pererab. i dop. M.: Radio i svyaz'. 1982. [in Russian]
  17. Kartashevskiy V.G. Metody povysheniya effektivnosti posledovatel'nykh sistem peredachi diskretnykh soobshcheniy v prostranstvenno-vremennykh radiokanalakh. Diss. … d.t.n. SPb. 1995 [in Russian]
  18. Kartashevskiy V.G. Metody povysheniya effektivnosti posledovatel'nykh sistem peredachi diskretnykh soobshcheniy v prostranstvenno-vremennykh radiokanalakh: avtoreferat diss. ... d.t.n. SPb. 1995. [in Russian]
  19. Kartashevskiy V.G. Obrabotka prostranstvenno-vremennykh signalov v kanalakh s pamyat'yu. M.: Radio i svyaz'. 2000. [in Russian]
  20. Khabarov E.O. Razrabotka i issledovanie metodov peredachi diskretnykh signal'nykh posledovatel'nostey po kanalam s mezhsimvol'noy interferentsiey: diss. ... d.t.n. Samara. 2013. [in Russian]
  21. Kartashevskiy V.G., Shutov D.A. Algoritm demodulyatsii signalov FM-8 v kanale s pamyat'. DSPA: Voprosy primeneniya tsifrovoy obrabotki signalov. 2011. T. 1. № 1. S. 28–30. [in Russian]
  22. Abend К., Fritchman B.D. Statistical detection for communication channels with intersymbol interference. Proc. IEEE. 1970. V. 58. № 5. P. 779–785.
  23. Chang R.W., Hancock J.C. On Receiver structures for Channels having memory. IEEE Trans. 1966. V. IT-12. № 4. P. 463–468.
  24. Ungerboeck G. Nonlinear equalization of binary signals in Gaussian Noise. IEEE Trans. Commun. Technol. 1971. V. 19. № 6. P. 1128–1137.
  25. Nikolaev B.I. Posledovatel'naya peredacha diskretnykh soobshcheniy po nepreryvnym kanalam s pamyat'yu. M.: Radio i svyaz. 1988. [in Russian]
  26. Omura J.K. On optimum receivers for channels with intersymbol interference. IEEE Int. Symp. Information Theory. Noordwijk, Noordwijk. June 1970.
  27. Kobayashi H. Application of probabilistic decoding to digital magnetic recording systems. IBM Journal of Research and Development. 1971. V. 15. № 1. P. 64–74.
  28. Kobayashi H. Correlative level coding and maximum-likelihood decoding. IEEE Trans. Inform. Theory. 1971. V. 17. № 5. P. 586–594.
  29. Kobayashi H. A Survey of Coding Schemes for Transmission or Recording of Digital Data. IEEE Transactions on Communication Technology. 1971. V. 19. № 6. P. 1087–1100.
  30. Forney G. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory. 1972. V. 18. № 3. P. 363–378.
  31. Andersen I. Sample-Whitened Matched Filter. IEEE Transactions on Information Theory. 1973. V. 19. № 5. P. 653–659.
  32. Ungerboeck G. Nonlinear equalization of binary signals in Gaussian Noise. IEEE Trans. Commun. Technol. 1971. V. 19. № 6. P. 1128–1137.
  33. Ungerboeck G. Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems. IEEE Transactions on Communications. 1974. V. 22. № 5. P. 624–636.
  34. Mackechnie L.K. Receivers for channels with intersymbol interference. IEEE Int. Symp. Information Theory, Pacific Grove, CA, USA. January 1972.
  35. Viterbi A.D., Omura Dzh.K. Printsipy tsifrovoy svyazi i kodirovaniya. Per. s angl. Pod red. K.Sh. Zigangirova. M.: Radio i svyaz'. 1982. [in Russian]
  36. Lucky R.W. Automatic equalization for digital communication. The Bell System Technical Journal. 1965. V. 44. № 4. P. 547–588.
  37. Lucky R.W. Techniques for adaptive equalization of digital communication systems. The Bell System Technical Journal. 1966. V. 45. № 2. P. 255.
  38. Widrow B. Adaptive filters I: Fundamentals. SU-SEL-66-126; Stanford University, Systems Theory Laboratory: Stanford, CA, USA. 1966.
  39. Widrow B., Hoff M.E. Adaptive switching circuits. Convention record of Western Electronic Show and Convention (1960 I.R.E. WESCON), Los Angeles, CA, USA, 23–26 August 1960. The Institute of Radio Engineers, Inc.: New York, N.Y., USA. 1960. V. 4. P. 96–104.
  40. Proakis J., Miller J. Adaptive receiver for data transmission over time-dispersive channels. IEEE Transactions on Information Theory. 1969. V. 15. № 4. P. 484–497.
  41. Qureshi S., Newhall E. Adaptive receiver for data transmission over time-dispersive channels. IEEE Transactions on Information Theory. 1973. V. 19. № 4. P. 448–457.
  42. Saltzberg B.R. Intersymbol interference error bounds with application to ideal bandlimited signaling. IEEE Transactions on Information Theory. 1968. V. 14. № 4. P. 563–568.
  43. Lugannani R. Intersymbol Interference and Probability of Error in Digital Systems. IEEE Transactions on Information Theory. 1969. V. 15. № 6. P. 682–688.
  44. Ho E.Y., Yeh Y.S. A new approach for evaluating the error probability in the presence of intersymbol interference and additive Gaussian noise. The Bell Systems Technical Journal. 1970. V. 49. № 9. P. 2249–2265.
  45. Shimbo O., Celebiler M. The Probability of Error due to Intersymbol Interference and Gaussian Noise in Digital Communication
    Systems. IEEE Transactions on Communication technology. 1971. V. 19. № 2. P. 113–119.
  46. Glave F. An Upper Bound on the Probability of Error due to Intersymbol Interference for Correlated Digital Signals. IEEE Transactions on Information Theory. 1972. V. 18. № 3. P. 356–363.
  47. Yao K. On minimum average probability of error expression for binary pulse-communication system with intersymbol interference. IEEE Transactions on Information Theory. 1972. V. 18. № 4. P. 528–531.
  48. Yao K., Tobin R.M. Moment Space Upper and Lower Error Bounds for Digital Systems with Intersymbol Interference. IEEE Transactions on Information Theory. 1976. V. 22. № 1. P. 65–74.
  49. Ungerboeck G. Theory on the Speed of Convergence in Adaptive Equalizers for Digital Communication. IBM Journal of Research and Development. 1972. V. 16. № 6. P. 546–555.
  50. Gitlin R.D., Weinstein S.B. On the Required Tap-Weight Precision for Digitally Implemented, Adaptive, Mean-Squared Equalizers. Bell System Technical Journal. 1979. V. 58. № 2. P. 301–321.
  51. Proakis J.G. Advances in Equalization for Intersymbol interference. In Advances of communication systems. Viterbi A.J. Ed.; Elsevier, Inc.: 1975. V. 4. P. 123–198.
  52. Prokis Dzh. Tsifrovaya svyaz'. Per s angl.. Pod red D.D. Klovskogo. M.: Radio i svyaz'. 2000. [in Russian]
  53. Vasilenko G.I. Teoriya vosstanovleniya signalov: O reduktsii k ideal'nomu priboru v fizike i tekhniki. M.: Sov. radio. 1979. [in Russian]
  54. Verlan' A.F., Sizikov V.S. Integral'nye uravneniya: metody, algoritmy, programmy: spravochnoe posobie. Kiev: Nauk. dumka. 1986.
    [in Russian]
  55. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. M.: Nauka. 1979. [in Russian]
  56. Ungerboeck G. Fractional Tap-Spacing Equalizer and Consequences for Clock Recovery in Data Modems. IBM Journal of Research and Developments. 1972. V. 16. № 6. P. 546–555.
  57. Qureshi S., Forney G.D. Performance and Properties of a T/2 Equalizer. In Proceedings of National Telecommunications Conference, Los Angeles, CA, USA, December 1977. P. 11.1.1. –11.1.14.
  58. Gitlin R.D., Weinstein S.B. Fractional-spaced equalization: An improved digital transversal equalizer. The Bell Systems Technical Journal. 1981. V. 60. № 2. P. 275–296.
  59. Long G., Ling F., Proakis J.G. Fractionally-spaced equalizers based on singular value decomposition. In Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP-88), New York, N.Y., USA, 11–14 April 1988. P. 1514–1517.
  60. Long G., Ling F., Proakis J.G. Application of fractionally-spaced decision-feedback equalizers to HF fading channels. In Proceedings of MILCOM 88, 21st Century Military Communications - What's Possible?'. Conference record. Military Communications Conference, San Diego, CA, USA, 23–26 October 1988. P. 103–107.
  61. Austin M.E. Decision-Feedback Equalization for Digital Communication Over Dispersive Channels. RLE-TR-461-04744914. MIT,
    Research Laboratory of Electronics: Cambridge, MA, USA, 196.
  62. George D., Bowen R., Storey J. An adaptive decision feedback equalizer. IEEE Transactions on Communication Technology. 1971. V. 19. № 3. P. 281–293.
  63. Monsen P. Feedback equalization for fading dispersive channels. IEEE Transactions on Information Theory. 1971. V. 17. № 1. P. 56–64.
  64. Salz J. Optimum mean-square decision feedback equalization. The Bell Systems Technical Journal. 1973. V. 52. № 8. P. 1341–1373.
  65. Price R. Nonlinearly Feedback-Equalized PAM versus Capacity for Noisy Filter Channels. IEEE International Conference on Communications, ICC ‘72, June 1972. P. 22.12–22.17.
  66. Belfiore C.A., Park J.H. Decision Feedback Equalization. Proceedings of the IEEE. 1979. V. 67. № 8. P. 1143–1156.
  67. Godard D. Channel equalization using a Kalman filter for fast data transmission. IBM Journal of Research and Development. 1974. V. 18. № 3. P. 267–273.
  68. Picinbono B. Adaptive Signal Processing for Detection and Communication.in Communication Systems and Random Process Theory. Ed. J.K. Skwirzynski. Dordrecht: Springer Netherlands. 1978.
  69. Hsu F.M., Giordano A.A., H.E. de Pedro, Proakis J.G. High speed modem techniques for fading dispersive channels. NUSC Workshop Comm. Fading Dispersive Medium, (5 - 6 June 1979. New London, CT, USA), N.Y.: IEEE. p. 22
  70. Bierman G.J. Measurement updating using the U-D factorization. Proceedings of 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes, Houston, TX, USA, 10-12 December 1975. P. 337–346.
  71. Satorius E., Pack J. Application of least squares lattice algorithms to adaptive equalization. IEEE Transactions on Communications. 1981. V. 29. № 2. P. 136–142.
  72. Falconer D., Ljung L. Application of fast Kalman estimation to adaptive equalization. IEEE Transactions on Communications. 1978. V. 26. № 10. P. 1439–1446.
  73. Lim T.L., Mueller M.S. Rapid equalizer start-up using least squares algorithms. Proceedings of 1980 IEEE International Conference on Communications (ICC ’80), Seattle, WA, USA, 8-12 June 1980. P. 22–24.
  74. Bierman G.J. Factorization Methods for Discrete Sequential Estimation, 1st ed.; Academic Press. 1977.
  75. Carlson N.A. Fast triangular formulation of the square root filter. AIAA Journal 1973. V. 11. № 9. P. 1259–1265.
  76. Andrews A. A square root formulation of the Kalman covariance equations. AIAA Journal. 1968. V. 6. № 6. P.1165–1166.
  77. Gentleman W.M. Least squares computations by Givens transformations without square roots. IMA Journal of Applied Mathematics. 1973. V. 12. № 3. P. 329–336.
  78. Morf M., Dickinson B., Kailath T., Vieira A. Efficient solution of covariance equations for linear prediction. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1977. V. 25. № 5. P. 429–433.
  79. Morf M., Vieira A., Lee D. Ladder forms for identification and speech processing.. Proceedings of 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications, New Orleans, LA, USA, 7-9 December 1977. P. 1074–1078.
  80. Morf M., Lee D.T. Recursive least squares ladder forms for fast parameter tracking. Proceeding of 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10-12 January 1979. P. 1362–1367.
  81. Makhoul J. A class of all-zero lattice digital filters: Properties and applications. IEEE Transactions on Acoustics, Speech and Signal Processing. 1978. V. 26. № 4. P. 304–314
  82. Satorius E., Alexander S. Channel equalization using adaptive lattice algorithms. IEEE Transactions on Communications. 1979. V. 27. № 6. P. 899–905.
  83. Ling F., Proakis J. Generalized least squares lattice algorithm and its application to decision feedback equalization. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '82), Paris, France, 3-5 May 1982. P. 1764–1769.
  84. Ling, F., Proakis J. Numerical Accuracy and Stability: Two Problems of Adaptive Estimation Algorithms Caused by Round-Off Error. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '84), San Diego, CA, USA,19-21 March 1984. P. 571–574.
  85. Ling F., Proakis J. A generalized multichannel least squares lattice algorithm based on sequential processing stages. IEEE Transactions on Acoustics, Speech and Signal Processing 1984. V. 32. № 2. P. 381–389.
  86. Ling F., Proakis J. Adaptive lattice decision-feedback equalizers - Their performance and application to time-variant multipath channels. IEEE Transactions on Communications. 1985. V. 33. № 4. P. 348–356.
  87. Cilliers J.E., Linde L.P. Comparison of data directed estimators and decision feedback lattice equaliser algorithms’ performance on fading channels. In Proceedings of IEEE. AFRICON '96, Stellenbosch, South Africa, 27 September 1996. V. 2. P. 1083–1086.
  88. Goryachkin O.V. Metody slepoy obrabotki signalov i ikh prilozheniya v sistemakh radiotekhniki i svyazi. M.: Radio i svyaz'. 2003.
    [in Russian]
  89. Sato Y. A method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Transactions on Communications. 1975. V. 23. № 6. P. 679–682.
  90. Godard D. Self-recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Transactions on Communications. 1980. V. 28. № 11. P. 1867–1875.
  91. Benveniste A., Goursat M. Blind equalizer. IEEE Transactions on Communications. 1984. V. 32. № 8. P. 871–883.
  92. Sato Y., Oda H., Hashimoto S. Blind Suppression of Time Dependency and its Extension to Multi-Dimensional Equalization. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '86), Houston, TX, USA, 1-4 December 1986. P. 1652–1656.
  93. Foschini G.J. Equalizing without altering or detecting data. AT&T Technical Journal. 1985. V. 64. № 8. P. 1885–1911.
  94. Picchi G., Prati G. Blind equalization and carrier recovery using a «Stop-and-Go» decision-directed algorithm. IEEE Transactions on Communications. 1987. V. 35. № 9. P. 877–887.
  95. Shalvi O., Weinstein E. New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Transactions on Information Theory. 1990. V. 36. № 2. P. 312–321.
  96. Nikias C.L., Raghuveer M.R. Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE. 1987. V. 75. № 7. P. 869–891.
  97. Hatzinakos D., Nikias C.L. Blind equalization using a tricepstrum-based algorithm. IEEE Transactions on Communications. 1991. V. 39. № 5. P. 669–682.
  98. Tong L., Xu G., Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Transactions on Information Theory. 1994. V. 40. № 2. P. 340–349.
  99. Seshadri N. Joint data and channel estimation using fast blind trellis search techniques. IEEE Transactions on Communications. 1994. V. 42. № 234. P. 1000–1011.
  100. Zervas E., Proakis J., Eyuboglu V. A ‘quantized’ channel approach to blind equalization. Conference Record of SUPERCOMM/ICC '92 Discovering a New World of Communications, Chicago, IL, USA, 14-18 June 1992. V. 3. P. 1539–1543.
  101. Raheli R., Polydoros A., Tzou C.-K. Per-survivor processing: a general approach to MLSE in uncertain environments. IEEE Transactions on Communications. 1995. V. 43. № 234. P. 354–364.
  102. Miroshnikova N.E. Analiz effektivnosti algoritmov slepoy identifikatsii ionosfernykh kanalov. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2016. T. 8. № 3. S. 30–34. [in Russian]
  103. Abed-Meraim K., Qiu W., Hua Y. Blind system identification. Proceedings of the IEEE, New York, N.Y., USA, August 1997. P. 1310–1322.
  104. Hua Y. Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Transactions on Signal Processing. 1996. V. 44. № 3. P. 661–672.
  105. Tong L., Perreau S. Blind channel estimation: from subspace to maximum likelihood methods. Proceedings of the IEEE. 1998. V. 86. № 10. P. 1951–1968.

 

Date of receipt: 19.12.2022
Approved after review: 13.01.2023
Accepted for publication: 30.01.2023