I.Yu. Bratukhin1, A.F. Kriachko2
1 Joint-stock company «Signal» (St. Petersburg, Russia)
2 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
A comprehensive study of the electrodynamic properties of radio absorbing materials (RAM) is inseparably connected with the task of modeling the structure of such materials. Methods of modeling the microstructures of radio-absorbing materials consider them as a combination of the constituent characteristics of the described material by the coefficients of the corresponding model equations, and the topology of the material, which is expressed by the areas of integration, where these equations are defined. The aim of the work is to develop methods for modeling RAM microstructures, which allow to provide a unified approach to the study of thermophysical and electrodynamic characteristics during their creation. The practical significance lies in the study of a unified approach to the method of analysis of coupled processes in RAM structures, based on field theory methods, which allows to investigate their thermophysical and electrodynamic processes. The area of application is the development of radio-absorbing coatings, as well as the study of the influence of their structure on the scattering-absorbing properties and thermophysical parameters. The area of application is the study of the properties of radio-absorbing coatings.
Bratukhin I.Yu., Kriachko A.F. Numerical method for approximate solution of problems of modeling physical characteristics of radio-absorbing materials. Achievements of modern radioelectronics. 2022. V. 76. № 12. P. 29–36. DOI: https://doi.org/10.18127/ j20700784-202212-05 [in Russian]
- Cobol' I.M. Metod Monte-Karlo. M.: Nauka. 1968. 64 s. [In Russian].
- Fizicheskij jenciklopedicheskij slovar'. Pod red. A. Prohorova. M.: Sovetskaja jenciklopedija. 1983. 944 s. [In Russian].
- Prigozhin I.R., Kondepudi D. Sovremennaja termodinamika. Ot teplovyh dvigatelej do dissipativnyh struktur. Per. s angl. A. Danilova. M.: Mir. 2002. 464 s. [In Russian].
- Aleksandrov P., Pasynkov B. Vvedenie v teoriju razmernosti. Vvedenie v teoriju topologicheskih prostranstv i ob-shhuju teoriju razmernosti. M.: Nauka. 1973. 576 s. [In Russian].
- Arnol'd V. Matematicheskie metody klassicheskoj mehaniki. Izd. 3-e. M.: Nauka. 1989. 472 s. [In Russian].
- Brenner S., Scott R. The Mathematical Theory of Finite Element Methods. 3-rd Edition. New-York: Springer. 2008. 404 p.
- Mitchell Je., Ujejt R. Metod konechnyh jelementov dlja uravnenij s chastnymi proizvodnymi. Per. s angl. pod red. N.N. Janenko. M.: Mir. 1981. 215 s. [In Russian].
- Farlou S. Uravnenija s chastnymi proizvodnymi dlja nauchnyh rabotnikov i inzhenerov. Per. s angl. A.I. Plisa. M.: Mir. 1985. 384 s. [In Russian].
- Lykov A., Mihajlov Ju. Teorija perenosa jenergii i veshhestva. Minsk: Izd-vo AN BSSR. 1959. 332 s. [In Russian].
- Kinsler P., Favaro A., Makkoll M.U. Chetyre teoremy Pojntinga. Evropejskij fizicheskij zhurnal. 2009. T. 30. № 5. S. 983. [In Russian].
- Solovejchik Ju.G., Rojak M.Je., Persova M.G. Metod konechnyh jelementov dlja skaljarnyh i vektornyh zadach. Novosibirsk: NGTU. 2007. 896 s. [In Russian].
- Bestugin A.R., Kirshina I. A., Sauta O.I., Amelin K.B. Povyshenie tochnosti i nadezhnosti korrektiruyushchej informacii nazemnogo funkcional'nogo dopolneniya GNSS. Radiotekhnika. 2022. T. 86. № 5. S. 111–120 [In Russian].