350 rub
Journal Achievements of Modern Radioelectronics №2 for 2021 г.
Article in number:
Calculation trajectories of stealthy movement of aircraft to a specified point in detection zone of onboard Doppler radar
DOI: 10.18127/j20700784-202102-04
UDC: 621.396.969.34; 531.14
Authors:

A.P. Kirsanov

 JSC «Concern «Vega» (Moscow, Russia)

Abstract:

An onboard radar operating in the impulse–Doppler mode has the characteristic features of the detection zone. The feature lies in the fact that at every point of the detection zone an aircraft has a sector of directions such as the onboard Doppler radar will not detect it as long as it moves in these directions. This sector is called the sector of invisible motion directions of the aircraft. Because of these features, there are such trajectories that aircraft flying along them are not detected by an onboard Doppler radar, such as an AWACS radar. The article proposes a method for planning stealthy trajectories between two given points in the Doppler radar coverage area. Trajectories are selected from a parametric family of elliptical stealthy trajectories, which are ellipses in the AWACS-associated moving coordinate system. An equation is found for the characteristic parameter of the ellipse, the solution of which allows us to uniquely identify the stealthy trajectory between two given points. The conditions for the existence of stealthy trajectories passing through specified points are investigated.

Pages: 38-47
For citation

Kirsanov A.P. Calculation trajectories of stealthy movement of aircraft to a specified point in detection zone of  onboard Doppler radar. Achievements of modern radioelectronics. 2021. V. 75. № 2. P. 38–47. DOI: 10.18127/ j20700784-202102-04. [in Russian]

References
  1. Galyaev A.A., Maslov E.P. Optimizatsiya zakonov ukloneniya podvizhnogo ob"ekta ot obnaruzheniya. Izvestiya RAN. Teoriya i sistemy upravleniya. 2010. № 4. S. 52–62. [in Russian]
  2. Galyaev A.A., Lysenko P.V., Yakhno V.P. Uklonenie podvizhnogo ob"ekta ot odinochnogo obnaruzhitelya na zadannoy skorosti. Problemy upravleniya. 2020. № 1. S. 83–91. [in Russian]
  3. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya. M.: Radiotekhnika. 2014. [in Russian]
  4. Long Maurice W. Airborne Early Radar Warning System Concepts. SciTech. 2004.
  5. Gandurin V.Α., Kirsanov A.P. Osobennosti zony obnaruzheniya nizkoletyashchikh vozdushnykh ob"ektov doplerovskoy radiolokatsionnoy stantsii. Radiotekhnika. 2007. № 10. S. 42–46. [in Russian]
  6. Kirsanov A.P. Traektorii skrytnogo dvizheniya vozdushnogo ob"ekta v zone obnaruzheniya bortovoy doplerovskoy radiolokatsionnoy stantsii. Avtomatika i telemekhanika. 2014. № 9. S. 144–155. [in Russian]
  7. Kirsanov A.P. Klassifikatsiya traektoriy skrytnogo dvizheniya vozdushnogo ob"ekta v zone obnaruzheniya bortovoy doplerovskoy  radiolokatsionnoy stantsii. Izvestiya RAN. Teoriya i sistemy upravleniya. 2020. № 4. S. 169–176. [in Russian]
  8. Gordon N., Ristic B. Tracking airborne targets occasionally hidden in the blind Doppler. Digit. Signal Process. 2002. № 12 (12). P. 383–393.
  9. Wei Han, Ziyue Tang, Zhenbo Zhu Method of target tracking with Doppler blind zone constraint. Journal of Systems Engineering and Electronics. December 2013. V. 24. №. 6. P. 889–898.
  10. Wang L.-X., Zhou D.-Y., Zheng R. A stealthy path planning method for aircraft by constant azimuth. Proceedings of the International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT). 2010. P. 497–503.
  11. Arnol'd V.I. Matematicheskie metody klassicheskoy mekhaniki. M.: Editorial URSS. 2003. [in Russian]
  12. Fikhtengol'ts G.M. Kurs differentsial'nogo i integral'nogo ischisleniya. T. 1. M.: Fizmatlit. 2006. [in Russian]
Date of receipt: 16.12.2020 г.
Approved after review: 28.12.2020 г.
Accepted for publication: 15.01.2021 г.