350 rub
Journal Achievements of Modern Radioelectronics №3 for 2020 г.
Article in number:
Gaussian approximation application in the identification and adaptive evaluation algorithms used in mobile ground object navigation systems on the basis of global navigation satellite systems
Type of article: scientific article
DOI: 10.18127/j20700784-202003-05
UDC: 621.391.2
Authors:

А.V. Ivanov – Dr.Sc. (Eng.), Professor,

Tambov State Technical University

E-mail: resbn@jesby.tstu.ru

V.О. Surkov – Post-graduate Student,

Tambov State Technical University

E-mail: surkov-v@mail.ru

N.А. Lezhneva – Investigator,

LLC Airport Management Company Limited (Domodedovo)

E-mail: Volchitsa9389@mail.ru

Abstract:

Abstract

The article discusses the synthesis of identification quasi-optimal algorithms and adaptive estimation of discrete-continuous processes.

When using global satellite navigation system in navigation systems, several problems have to be solved simultaneously: coordinates and motion parameters estimation of mobile objects;

evaluation of radio signals at the input of equipment for receiving signals from global satellite  navigation systems; assessment of transmitted service information; monitoring the integrity of navigation data.

Theoretically, the solution of these problems is reduced to the problem solution of identification and adaptive estimation of discretecontinuous processes. A feature of the problem is that discrete-continuous processes are evaluated in conjunction with the identification problem. Identification is the refinement of slowly changing processes observations that describe meter errors. Due to the fact that these processes at long intervals of time are almost constant, their sharp change is associated with a violation of the navigation data integrity. In this case, the identification problem is considered as a problem of parametric estimation. The novelty is that the discrete process is a two-component composite process, each component of which is a vector process, and the continuous process is a multicomponent diffusion process.

The problem of synthesis of optimal identification algorithms and adaptive estimation of discrete-continuous processes is formulated. To describe the change discrete processes states, a mathematical model is used in the form of discrete Markov processes. The change in the multicomponent diffusion process in time is described by a vector-matrix differential stochastic equation.

To obtain optimal algorithms, a joint vector discrete-continuous process is formed. Using the methods of the Markov theory of random process estimation according to the maximum a posteriori probability density criterion, optimal identification algorithms and adaptive estimation of discrete-continuous processes are obtained. However, the optimal algorithms implementation based on the posterior distributions calculation is associated with significant difficulties. Using a Gaussian approximation method, an a posteriori probability density of a slowly changing process is obtained in the a normal distribution form. Expressions are derived in the recurrence equations form describing the normal distribution parameters, namely: the mathematical expectation vector and the matrix of posterior variances of estimation errors.

Pages: 38-46
References
  1. GLONASS. Principy postroenija i funkcionirovanija. Pod red. A.I. Perova, V.N. Harisova. Izd. 3-e, pererab. M.: Radiotehnika. 2005.  [in Russian]
  2. Ivanov A.V., Neguljaeva A.P., Moskvitin S.P. Avtonomnyj kontrol' celostnosti navigacionnyh dannyh sputnikovyh radionavigacionnyh sistem metodami sravnenija i nevjazok. Vestnik TGTU. 2016. T. 22. № 3. S. 358–367. [in Russian]
  3. Ivanov A.V., Komrakov D.V., Surkov V.O. Algoritmy obrabotki informacii v navigacionnyh sistemah nazemnyh podvizhnyh ob#ektov s kontrolem celostnosti navigacionnyh dannyh sputnikovyh radionavigacionnyh sistem. Voprosy sovremennoj nauki i praktiki. Universitet im. V. I. Vernadskogo. 2014. № 52. S. 53–58. [in Russian]
  4. Gromakov Ju.A., Severin A.V., Shevcov V.A. Tehnologii opredelenija mestopolozhenija v GSM i UMTS. Jeko-Trenz. 2005. [in Russian]
  5. Pudovkin A.P., Panasyuk Yu.N., Danilov S.N., Moskvitin S.P. Synthesis of channel tracking for random process parameters under  discontinuous variation. Journal of Physics: Conference Series. 2018. V. 1015. № 3. Article id. 032112.
  6. Pudovkin A.P., Panasyuk Yu.N., Danilov S.N., Moskvitin S.P. Synthesis of Algorithm for Range Measurement Equipment to Track  Maneuvering Aircraft Using Data on Its Dynamic and Kinematic Parameters. Journal of Physics: Conference Series. 2018. V. 1015. № 3. Article id. 032111.
  7. Pudovkin A.P., Danilov S.N., Panasjuk Ju.N. Perspektivnye metody obrabotki informacii v radiotehnicheskih sistemah: monografija. SPb.: Jekspertnye reshenija. 2014. [in Russian]
  8. Ivanov A.V., Surkov V.O. Identifikacija i adaptivnoe ocenivanie diskretno-nepreryvnyh processov. Radiotehnika. 2018. № 10. S. 81–91. DOI 10.18127/j00338486-201808-11. [in Russian]
  9. Jarlykov M.S. Statisticheskaja teorija radionavigacii. M.: Radio i svjaz'. 1985. [in Russian]
  10. Jarlykov M.S., Mironov M.A. Markovskaja teorija ocenivanija sluchajnyh processov. M.: Radio i svjaz'. 1993. [in Russian]
  11. Aoki M. Optimizacija stohasticheskih system: Per. s angl. М.: «Nauka». Gl. red. fiz.-mat. lit-ry. 1971. [in Russian]
Date of receipt: 18 октября 2019 г.