350 rub
Journal Achievements of Modern Radioelectronics №2 for 2019 г.
Article in number:
Main directions of development and creation of integrated on-board systems of flight safety of aircraft, including control systems physiological parameters of health of the pilot
Type of article: scientific article
DOI: 10.18127/j20700784-201902-03
UDC: 629.735
Authors:

D.S. Koptev – Post-graduate Student, South-Western State University (Kursk)

E-mail: d.s.koptev@mail.ru

I.G. Babanin – Senior Lecturer, South-Western State University (Kursk)

I.Е. Mukhin – Dr.Sc. (Eng.), Professor, Senior Research Scientist, South-Western State University (Kursk)

Abstract:

To date, the task of ensuring flight safety is mainly solved with the help of post-flight analysis of data recorded by the on-Board system of objective control and on-Board registration device in ground processing devices. However, the inherent functionality of such a control system basically allows you to monitor the serviceability of the Aircraft to the next departure and does not allow for a longterm forecast of the technical condition for a longer term. Also, the residual life of the glider, the engine, depending on the degree of their loading during the execution of complex aerobatics is not predicted. Due to the significant physical and emotional loads, the performance of the flight task can also significantly depend on the degree of readiness of the pilot and his reaction to emergency situations. This factor is currently also poorly taken into account and not fully controlled directly during the flight. The currently existing fragmented and narrowly focused approach to the diagnosis of the main components and systems of Aircraft, in principle, does not allow for long-term prediction of the integral technical condition, since almost all its components are in dynamic correlation, tied to the main phases of flight. The development of modern civil and military aircraft is characterized by a rapid increase in the degree of functional saturation due to the expansion of the range of tasks. The specificity of these tasks is due to a significant expansion of the field of application in difficult climatic and geographical conditions, especially in the Arctic zones in the performance of specific works. In this regard, there was a fundamentally important transition from the separate design and integration of gliders and avionics to the design of aircraft systems (AK), representing a single complex system with many interdependent and interrelated goals. This difference is primarily due to the deep integration of the integrated control system of the aircraft with the control systems of the power plant and other systems. The management of such a complex aviation complex in a time-deficit and dynamically changing operational environment requires the development of an integrated system of decision-making support by the crew, current and postflight control of the pilots ' physiological state.

 

Pages: 44-53
References
  1. Muhin I.E., Muhin A.I., Mihajlov S.N., Koptev D.S. Metodologicheskie osnovy sinteza sistem diagnostiki tehnicheskogo sostoyaniya kosmicheskih i letatel'nyh apparatov. Monografiya. Kursk: Yugo-Zap. gos. un-t. 2018.
  2. Muhin I.E., Dvornikov M.V., Koptev D.S. Podsistema kontrolya fiziologicheskogo sostoyaniya pilota kak odnogo iz zven'ev biotehnicheskoj sistemy ergaticheskogo tipa «pilot - samolet - okruzhayuschaya sreda» // Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Ser.: Upravlenie, vychislitel'naya tehnika, informatika. Medicinskoe priborostroenie. 2017. T. 7. № 4 (25). S. 59–69.
  3. Muhin I.E., Seleznev S.L., Koptev D.S. Napravleniya i prakticheskie rezul'taty sozdaniya metodov i sredstv diagnostiki i prognostiki sostoyaniya aviacionnogo kompleksa «chelovek - mashina» // Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Ser.: Upravlenie, vychislitel'naya tehnika, informatika. Medicinskoe priborostroenie. 2017. T. 7. № 3 (24). S. 46–57.
  4. Muhin I.E., Hmelevskaya A.V., Koptev D.S. Realizaciya koncepcii diagnostiki antropologicheskoj sistemy «chelovek - mashina» i ee integrirovannoj logicheskoj podderzhki // Materialy I Vseross. nauch.-praktich. konf. «Infokommunikacii i kosmicheskie tehnologii: sostoyanie, problemy i puti resheniya». V 2–h chastyah. 2017. S. 71–82.
  5. Muhin I.E., Koptev D.S., Shevcov A.N., Schitov A.N. Analiz neblagopriyatnyh faktorov, vozdejstvuyuschih na pilota vozdushnogo sudna v processe poleta // Materialy XXI Mezhdunar. nauch.-tehnich. konf. «Mediko-ekologicheskie informacionnye tehnologii - 2018». 2018. S. 23–29.
  6. Oficial'nyj sajt ZAO «NTC «Reagent». M. 2018. URL: http://www.reagent-rdc.ru/products/151.
  7. Donec V.V., Muravskij L.I. Osobennosti primeneniya priemnikov izlucheniya v bortovyh giperspektrometrah // Kosmіchna nauka і tehnologіya. 2012. T. 18. № 3. S. 20–37.
  8. Ivanov Yu.P., Nikitin V.G., Chernov V.Yu. Kontrol' i diagnostika izmeritel'no-vychislitel'nyh kompleksov: Ucheb. posobie. SPbGUAP. SPb. 2004.
  9. Orlov V.A. Metod i tehnicheskie sredstva ocenki adekvatnosti kompleksnoj nagruzki sostoyaniyu organizma pilotov sverhskorostnyh samoletov // Diss. … k.t.n. SPb. 1999. 
  10. Pantyuhov A.P., Sokolov Yu.A. Aviacionnaya medicina: Ucheb. posobie. Minsk: BGMU. 2013.
Date of receipt: 23 декабря 2018 г.