350 rub
Journal Achievements of Modern Radioelectronics №10 for 2018 г.
Article in number:
Choice of the parameters of the algorithm for autofocusing of radar images based on estimates of the average Doppler frequency
Type of article: scientific article
DOI: 10.18127/j20700784–201810–02
UDC: 621.396.96
Authors:

А.V. Broukhansky – Ph.D. (Eng.), Associate Professor, Moscow Aviation Institute (National Research University) E-mail: a.v.brou@gmail.com

Abstract:

The effect of the parameters of the autofocusing algorithm for radar images based on the measurement of the average Doppler frequency on the quality of the images formed by the synthetic aperture radar is investigated. The study is carried out by the method of statistical modeling. Errors in estimating the radial velocity and acceleration provided by the micronavigation system are modeled.  A criterion for the quality of focusing based on the proximity of the reference and synthesized images is proposed. Quantitative results of the dependence of the quality of the obtained images on the number of subintervals on which the trajectory signal of the synthesis interval are broken are obtained. As an example, it is noted that with a length of the synthesis interval equal to 200 periods of repetition of pulses, the best image quality is obtained by 20 subintervals of synthesis.

Pages: 6-13
References
  1. Aviacionnye sistemy radiovideniya / Pod red. G.S. Kondratenkova. M.: Radiotehnika. 2015.
  2. Kondratenkov G.S., Frolov A.Yu. Radiovidenie. Radiolokacionnye sistemy distancionnogo zondirovaniya Zemli. Ucheb. posobie dlya vuzov / Pod red.  G.S. Kondratenkova. M.: Radiotehnika. 2005.
  3. Radiolokacionnye sistemy mnogofunkcional'nyh samoletov. T. 1. RLS - informacionnaya osnova boevyh dejstvij mnogofunkcional'nyh samoletov. Sistemy i algoritmy pervichnoj obrabotki radiolokacionnyh signalov / Pod red. A.I. Kanaschenkova i V.I. Merkulova. M.: Radiotehnika. 2006.
  4. Verba V.S., Neronskij L.B., Osipov I.G., Turuk V.E. Radiolokacionnye sistemy zemleobzora kosmicheskogo bazirovaniya / Pod red. V.S. Verby. M.: Radiotehnika. 2010.
  5. Sinicyn E.F, Bruhanskij A.V. Modelirovanie iskazhenij traektornogo signala RSA s uchetom neodnorodnosti atmosfery // Elektrosvyaz'. № 3. 2017. S. 24–28.
  6. Cumming I.G, Wong F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation // Artech House. 2005.
  7. Sosulin Yu.G., Delektorsky A.A. Subaperture processing in SAR: Choice of the synthesizing interval length and moving target detection // 2008 International Radar Symposium. Wroclaw. 2008. P. 1–4.
  8. Delektorskij A.A., Sosulin Yu.G. Ocenka vliyaniya tangencial'noj sostavlyayuschej skorosti dvizhuschihsya celej na kachestvo izobrazhenij RSA i razrabotka prostogo algoritma obnaruzheniya // Sb. dokladov 10–j Mezhdunar. konf. «Cifrovaya obrabotka signalov i ee primenenie» (DSPA-2008). M.: RNTORES im. A.S.Popova. S. 405–408.
  9. Gur'yanov M.A., Prokof'ev A.A. Avtopodbor parametrov sinteza radiolokacionnogo izobrazheniya, poluchennogo s radiolokatora s sintezirovannoj aperturoj // Izv. vyssh. ucheb. zav. Elektronika. 2015. T. 20. № 2. S. 161–167.
  10. Chen K.-S. Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach. CRC Press. 2016.
Date of receipt: 15 августа 2018 г.