350 rub
Journal Achievements of Modern Radioelectronics №6 for 2017 г.
Article in number:
Characteristics of length-compatible low-density parity-check codes on finite geometries
Type of article: scientific article
UDC: 621.391.01
Authors:

L.Е. Nazarov – Dr.Sc. (Phys.-Math.), Leading Research Scientist, Kotelnikov Institute of Radio Engineering and Electronics of RAS

E-mail: nazarov@ire.rssi.ru

М.А. Sheglov – Expert, JSC Academician M.F.Reshetnev «Information Satellite Systems» E-mail: mih32@yandex.ru

Abstract:

There are description and simulation results for class of rate-compatible low-density parity-check codes (LDPC) on finite geometries (Euclidean and projective geometries). These codes can support a wide range of code word lengths and code rates by means of application shortening and puncturing schemes to mother LDPC codes. There are two iterative decoding algorithms for LDPC code presented in the article (BP and BP shuffled iterative decoding).

Pages: 38-48
References
  1. Piterson U., Ujeldon Je. Kody, ispravljajushhie oshibki / Per. s angl. M.: Mir. 1976. 
  2. Johnson S.J. Iterative Error Correction: Turbo, Low-density Parity-Check and Repeat-Accumulate Codes. Cambrige University Press. 2010.
  3. Gallager R.G. Low-density parity-check codes // IRE Transactions Information Theory. 1968. V. 8. P. 21–28.
  4. Tanner R.M. A recursive approach to low complexity codes // IEEE Transactions on Information Theory. 1984. V. IT-27. № 5. P. 533–547.
  5. MacKay D.J.C., Neal R.M. Near Shannon limit performance of low density parity check codes // Electronics Letters. 1997. V. 33. P. 457–458.
  6. Richardson T.J., Shokrollahi M.A., Urbanke R.L. Design of capacity-approaching irregular low-density parity-check codes // IEEE Transactions on Information Theory. 2001. V. 47. № 2. P. 619–637.
  7. Nazarov L.E., Golovkin I.V. Iterativnyj posimvol'nyj priem ansamblej signalov na osnove nizkoplotnostnyh kodov // Izvestija Vuzov. Jelektronika. 2007. № 3. S.43–49.
  8. Kou Y., Lin S., Fossorier M. Low-density parity-check codes based on finite geometries: a rediscovery and new results // IEEE Transactions on Information Theory. 2001. V. IT-47. № 11. P. 2711–2736.
  9. Liu Z., Pados D.A. A Decoding Algorithm for Finite-Geometry LDPC Codes // IEEE Transactions on Communications. 2005. V. 53. № 3. P. 415–421.
  10. Blejhut Teorija i praktika kodov, kontrolirujushhih oshibki / Per. s angl. M.: Mir. 1986.
  11. Thorpe J. Low-Density Parity-Check (LDPC) Codes Constructed From Protographs // IPN Progress Report 42-154. 2003. August 15. P. 1–7.
  12. Li Z., Chen L., Lin S., Fong W.H. Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes // IEEE Transactions on Communications. 2006. V. 54. № 1. P. 71–81.
  13. Research and Development for Space Data System Standards. Low density parity check codes for use in near-earth and deep space applications. 2007. Experimental specification CCSDS 131.1-O-2.
  14. Nazarov L.E., Shheglov M.A. Verojatnostnye harakteristiki iterativnogo priema diskretnyh signalov na osnove pomehoustojchivyh blokovyh nizkoplotnostnyh kodov // Zhurnal radiojelektroniki. 2015. № 4.
  15. Zhang J., Fossorier M.P.C. Shuffled Iterative Decoding // IEEE Transactions on Communications. 2005. V. 53. № 2. P. 209–213.

 

Date of receipt: 17 января 2017 г.