350 rub
Journal Achievements of Modern Radioelectronics №4 for 2017 г.
Article in number:
State of electrons in a system of ideal quantum dots
Authors:
А.М. Mandel - Ph.D. (Phys.-Math.), Associate Professor, Department of Physics, Moscow State University of Technology «STANKIN» E-mail: arkadimandel@mail.ru V.B. Oshurko - Dr.Sc. (Phys.-Math.), Professor, Head of Department of Physics, Moscow State University of Technology «STANKIN» G.I. Solomakho - Ph.D. (Phys.-Math.), Professor, Department of Physics, Moscow State University of Technology «STANKIN» К.G. Solomakho - Post-graduate Student, Assistent, Department of Physics, Moscow State University of Technology «STANKIN» S.G. Veselko - Ph.D. (Phys.-Math.), Associate Professor, Department of Physics, Moscow State University of Technology «STANKIN» S.S. Sharts - Ph.D. (Phys.-Math.), Associate Professor, Department of Physics, Moscow State University of Technology «STANKIN»
Abstract:
Wave functions of single-electron states in semiconductive matrix filled with ideal quantum dots (nanometric-sized zero-dimensional heterostructures capable to localize only one electron, IQDs) have been graphed. Energy fields of these states have been calculated. We have found that critical size of IQDs wouldn-t depend from its density (if the average distance between IQDs is much larger than its size). Multi-electron states in systems of IQDs have been studied on qualitative level. We have shown that in intrinsic semiconductors in standard temperature IQDs screening is similar to classic Debey pattern. We have found that Coulomb\'s interactions between electrons localized in IQDs are decreasing its binding energy, hence limiting maximum number of filled IDQs. We have deduced that maximum number of filled IQDs proportionally depends from binding energy, permittivity and volume, and inversely depends from screening length square, therefore optimal IQDs density could be calculated. Classic Maxwell probability distribution for number of IQDs has been graphed. We have concluded that most sustainable state could be reached when precisely half of maximum number of IQDs have been filled. This condition is universal.
Pages: 68-74
References

 

  1. Ledencov V.M., Ustinov V.M., SHHukin V.A., Kopev P.S., Alferov ZH.I., Bimberg D. Geterostruktury s kvantovymi tochkami: poluchenie, svojjstva, lazery // Fizika i tekhnika poluprovodnikov. 1998. T. 32. № 4. S. 385-392.
  2. SHik A.JA., Bakueva L.G., Musikhin S.F., Rykov S.A. Fizika nizkorazmernykh sistem. SPb.: Nauka. 2001.
  3. Grigorev S.N., Mandel A.M., Oshurko V.B., Solomakho G.I. O vozmozhnosti sozdanija odnoehlektronnykh sostojanijj v kvantovykh tochkakh v magnitnom pole dlja zadach opticheskikh kvantovykh vychislenijj //Opticheskijj zhurnal. 2014. T. 82. № 5. S. 3-10.
  4. Grigorev S.N., Mandel A.M., Oshurko V.B., Solomakho G.I. Orbitalnyjj i spinovyjj moment odnoehlektronnykh sostojanijj, lokalizovannykh na kvantovykh tochkakh v magnitnom pole //Opticheskijj zhurnal. 2014. T. 82. № 5. C. 11-18.
  5. Mandel A.M., Oshurko V.B., Solomakho G.I., SHarc A.A. O estestvennojj namagnichennosti idealnykh kvantovykh tochek i vozmozhnosti detektirovanija teragercovogo izluchenija v magnitnom pole //Radiotekhnika i ehlektronika. 2015. T. 60. № 10. S. 1073-1079.
  6. Mandel A.M., Oshurko V.B., Solomakho G.I., Solomakho K.G., Veretin V.S. Primenenie kachestvennykh metodov dlja rascheta spektra idealnykh kvantovykh tochek //Uspekhi sovremennojj radioehlektroniki. 2015. № 8. S. 18-28.
  7. Mandel A.M., Oshurko V.B., Solomakho G.I. O lokalizacii magnitnym polem odnoehlektronnykh sostojanijj v okrestnosti kvantovykh tochek drobnojj razmernosti //EHlektromagnitnye volny i ehlektronnye sistemy. 2014. № 6. S. 67-74.
  8. Baz A.I., Zeldovich JA.B., Perelomov A.M. Rassejanie, reakcii i raspady v nereljativistskojj kvantovojj mekhanike. M.: Nauka. 1966.
  9. Demkov JU.N, Ostrovskijj V.N. Metod potenciala nulevogo radiusa v atomnojj fizike. L.: Izd-vo LGU. 1975.
  10. SHikin V.B., SHikina JU.V. Zarjazhennye dislokacii v poluprovodnikovykh kristallakh // UFN. 1995. T. 165. № 8. S. 887-917.
  11. Anselm A.I. Vvedenie v teoriju poluprovodnikov. M.: Nauka. 1978.